하드웨어 SIMD 벡터 포인터와 해당 유형 간의 재해석 캐스팅이 정의되지 않은 동작인가요?
C에서는 float를 재해석_캐스트하는 것이 허용됩니까? __m256으로 이동하여 액세스 다른 포인터 유형을 통해 객체를 띄우나요?
다음 코드 예제는 이를 보여줍니다.
#include <immintrin.h> constexpr size_t _m256_float_step_sz = sizeof(__m256) / sizeof(float); alignas(__m256) float stack_store[100 * _m256_float_step_sz ]{}; __m256& hwvec1 = *reinterpret_cast<__m256>(&stack_store[0 * _m256_float_step_sz]); using arr_t = float[_m256_float_step_sz]; arr_t& arr1 = *reinterpret_cast<float>(&hwvec1);</float></__m256></immintrin.h>
hwvec1과 arr1에 정의되지 않은 동작이 있습니까? 엄격한 앨리어싱 규칙([basic.lval]/11)을 위반했습니까? 또는 내장 방식이 하나만 정의되어 있습니까?
__m256 hwvec2 = _mm256_load_ps(&stack_store[0 * _m256_float_step_sz]); _mm256_store_ps(&stack_store[1 * _m256_float_step_sz], hwvec2);
답변:
ISO C는 __m256을 정의하지 않으므로 무엇이 정의되는지 살펴봐야 합니다. 이를 지원하는 구현에 대한 그들의 행동. Intel의 내장 기능은 ISO C에서 char을 별칭으로 정의하는 것과 마찬가지로 __m256과 같은 벡터 포인터를 다른 항목의 별칭으로 허용하도록 정의합니다. (그러나 그 반대는 아닙니다. UB이며 실제로 __m256i에서 int*를 가리키고 참조를 해제하는 것이 중단됩니다.)
그렇습니다. _mm256_load_ps(를 사용하는 대신 __m256을 역참조하는 것이 안전합니다. ) 정렬 부하 고유. 그러나 특히 float/double의 경우 float에서의 캐스팅도 처리하므로 내장 함수를 사용하는 것이 더 쉬운 경우가 많습니다. 정수의 경우 AVX512 로드/저장 내장 함수는 void를 취하는 것으로 정의되지만 AVX2 및 이전 버전에는 (__m256i)&arr[i]와 같은 캐스트가 필요합니다. 이는 꽤 투박한 API 설계이며 이를 사용하여 코드를 복잡하게 만듭니다.
movd/movq와 같은 void를 사용하여 AVX512가 아닌 몇 가지 내장 함수도 추가되었습니다. 로드/저장 정렬 및 _mm_loadu_si32(void)와 같은 앨리어싱 안전 내장 함수. 이전에 Intel은 int를 직접 안전하게 로드해야 하는 _mm_cvtsi32_si128을 사용할 것이라고 가정했습니다. 이는 UB를 피하기 위해 memcpy를 사용하는 것을 의미했습니다(적어도 클래식 ICC 및 MSVC 이외의 컴파일러에서 정렬되지 않은 int*를 허용하고 엄격한 기준을 적용하지 않는 경우). 앨리어싱).
이때가 Intel이 LLVM으로의 마이그레이션을 고려하기 시작한 시기였을 것입니다. ICX/ICPX/OneAPI, 그리고 엄격한 앨리어싱을 시행하는 컴파일러에서 좁은 로드를 처리하는 것이 얼마나 혼란스러운지 깨달았습니다.
위 내용은 하드웨어 SIMD 벡터 포인터와 해당 유형 간의 캐스트를 재해석하는 것이 C에서 정의되지 않은 동작입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

C#과 C의 주요 차이점은 메모리 관리, 다형성 구현 및 성능 최적화입니다. 1) C#은 쓰레기 수집기를 사용하여 메모리를 자동으로 관리하는 반면 C는 수동으로 관리해야합니다. 2) C#은 인터페이스 및 가상 방법을 통해 다형성을 실현하고 C는 가상 함수와 순수한 가상 함수를 사용합니다. 3) C#의 성능 최적화는 구조 및 병렬 프로그래밍에 따라 다르며 C는 인라인 함수 및 멀티 스레딩을 통해 구현됩니다.

DOM 및 SAX 방법은 XML 데이터를 C에서 구문 분석하는 데 사용될 수 있습니다. 1) DOM 파싱은 XML로드를 메모리로, 작은 파일에 적합하지만 많은 메모리를 차지할 수 있습니다. 2) Sax Parsing은 이벤트 중심이며 큰 파일에 적합하지만 무작위로 액세스 할 수는 없습니다. 올바른 방법을 선택하고 코드를 최적화하면 효율성이 향상 될 수 있습니다.

C는 고성능과 유연성으로 인해 게임 개발, 임베디드 시스템, 금융 거래 및 과학 컴퓨팅 분야에서 널리 사용됩니다. 1) 게임 개발에서 C는 효율적인 그래픽 렌더링 및 실시간 컴퓨팅에 사용됩니다. 2) 임베디드 시스템에서 C의 메모리 관리 및 하드웨어 제어 기능이 첫 번째 선택이됩니다. 3) 금융 거래 분야에서 C의 고성능은 실시간 컴퓨팅의 요구를 충족시킵니다. 4) 과학 컴퓨팅에서 C의 효율적인 알고리즘 구현 및 데이터 처리 기능이 완전히 반영됩니다.

C는 죽지 않았지만 많은 주요 영역에서 번성했습니다 : 1) 게임 개발, 2) 시스템 프로그래밍, 3) 고성능 컴퓨팅, 4) 브라우저 및 네트워크 응용 프로그램, C는 여전히 유명한 활력 및 응용 시나리오를 보여줍니다.

C#과 C의 주요 차이점은 구문, 메모리 관리 및 성능입니다. 1) C# Syntax는 현대적이며 Lambda 및 Linq를 지원하며 C 기능을 유지하고 템플릿을 지원합니다. 2) C# 자동으로 메모리를 관리하고 C는 수동으로 관리해야합니다. 3) C 성능은 C#보다 낫지 만 C# 성능도 최적화되고 있습니다.

tinyxml, pugixml 또는 libxml2 라이브러리를 사용하여 C에서 XML 데이터를 처리 할 수 있습니다. 1) XML 파일을 구문 분석 할 수 있습니다. dom 또는 sax 메소드 사용, dom은 작은 파일에 적합하며 Sax는 큰 파일에 적합합니다. 2) XML 파일 생성 : 데이터 구조를 XML 형식으로 변환하고 파일에 씁니다. 이러한 단계를 통해 XML 데이터를 효과적으로 관리하고 조작 할 수 있습니다.

C에서 XML 데이터 구조로 작업하면 tinyxml 또는 pugixml 라이브러리를 사용할 수 있습니다. 1) pugixml 라이브러리를 사용하여 XML 파일을 구문 분석하고 생성하십시오. 2) 책 정보와 같은 복잡한 중첩 XML 요소를 처리합니다. 3) XML 처리 코드를 최적화하면 효율적인 라이브러리 및 스트리밍 구문 분석을 사용하는 것이 좋습니다. 이러한 단계를 통해 XML 데이터를 효율적으로 처리 할 수 있습니다.

C는 낮은 수준의 메모리 관리 및 효율적인 실행 기능으로 인해 게임 개발, 금융 거래 시스템 및 임베디드 시스템에 없어서는 안될 것이기 때문에 여전히 성능 최적화를 지배합니다. 구체적으로, 그것은 다음과 같이 나타납니다. 1) 게임 개발에서 C의 저수준 메모리 관리 및 효율적인 실행 기능은 게임 엔진 개발에 선호되는 언어가됩니다. 2) 금융 거래 시스템에서 C의 성능 장점은 대기 시간이 매우 낮고 처리량이 높음을 보장합니다. 3) 임베디드 시스템에서 C의 저수준 메모리 관리 및 효율적인 실행 기능은 자원 제약 환경에서 매우 인기가 있습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음