찾다
백엔드 개발파이썬 튜토리얼Dockerized 람다 함수로 상대 Python 가져오기

Relative Python imports in a Dockerized lambda function

상대 Python 가져오기는 람다 함수에 까다로울 수 있습니다. 나는 3년 전에 이에 관해 블로그를 썼습니다. 하지만 최근에는 Dockerized 람다 함수에서 동일한 문제가 발생했습니다. 그래서 이제 새로운 블로그를 시작할 때가 되었다고 생각했습니다!

단계를 따라가거나 GitHub에서 직접 결과를 확인할 수 있습니다.

프로젝트 설정

AWS CDK CLI를 설치했는지 확인하세요.

brew install aws-cdk

프로젝트 초기화:

cdk init app --language=typescript

람다 설정

먼저 파일 및 폴더 구조를 만들어야 합니다.

mkdir -p lib/functions/hello-world/hello_world
touch lib/functions/hello-world/hello_world/__init__.py
touch lib/functions/hello-world/requirements.txt
touch lib/functions/hello-world/Dockerfile

이제 다음과 같이 Dockerfile을 채워야 합니다.

FROM public.ecr.aws/lambda/python:3.12
COPY requirements.txt .
COPY hello_world ${LAMBDA_TASK_ROOT}/hello_world
RUN pip install --no-cache-dir -r requirements.txt
CMD ["hello_world.handler"]

Python 3.12 기반의 Python 기본 이미지를 사용하고 있습니다. 다음으로, 요구 사항.txt 파일과 소스 코드를 복사해 보겠습니다. 요구사항.txt 파일에 나열된 모든 종속성을 설치하고 핸들러 메소드가 CMD로 설정되어 있는지 확인합니다.

다음으로 Python 파일을 일부 코드로 채워야 합니다. __init__.py 파일에 다음 내용을 넣을 수 있습니다:

from typing import Dict, Any


def handler(event: Dict[str, Any], context: Any) -> Dict[str, str]:
    name = event.get("name", "World")

    return {
        "Name": name,
        "Message": f"Hello {name}!",
    }


__all__ = [
    "handler"
]

참고: 여기에 사용된 코드는 상대 가져오기를 사용할 수 있습니다. 별도의 패키지에 들어있기 때문에 가능한 일입니다. 이 예에서는 __init__.py 파일의 코드만 보여줍니다. 그러나 여기에서 여러 파일을 사용하여 프로젝트의 유지 관리성을 향상시킬 수 있습니다.

이 예에서는 종속성이 필요하지 않으므로 요구 사항.txt 파일을 비워 둘 수 있습니다. 종속성도 포함하는 방법을 설명하기 위해 이 예에 포함시켰습니다.

IaC를 사용하여 Lambda 함수 생성

폴더와 파일이 제자리에 있으므로 이제 CDK 구성에 Lambda 함수를 추가할 차례입니다. 다음과 같이 간단하게 추가할 수 있습니다.

    new lambda.Function(this, 'Function', {
      functionName: "hello-world",
      code: lambda.Code.fromAssetImage("lib/functions/hello-world", {
        platform: ecr_assets.Platform.LINUX_ARM64,
      }),
      runtime: lambda.Runtime.FROM_IMAGE,
      handler: lambda.Handler.FROM_IMAGE,
      architecture: lambda.Architecture.ARM_64,
      timeout: cdk.Duration.seconds(15),
      memorySize: 128,
    });

이 작업을 수행하려면 다음 가져오기도 필요합니다.

import * as lambda from 'aws-cdk-lib/aws-lambda';
import * as ecr_assets from 'aws-cdk-lib/aws-ecr-assets';

코드 디렉토리가 Dockerfile이 포함된 디렉토리를 가리키는지 확인하고 코드와 함수 자체에 대해 ARM 플랫폼을 선택했는지 확인하세요.

로컬에서 람다 함수 테스트

빠른 피드백이 중요하므로 컨테이너를 로컬에서 실행해야 하는 경우가 있을 수 있습니다. 이를 위해서는 먼저 컨테이너를 구축해야 합니다.

docker build --platform linux/arm64 \
  -t hello-world:latest \
  -f ./lib/functions/hello-world/Dockerfile \
  ./lib/functions/hello-world

이 명령은 프로젝트 루트에서 실행할 수 있습니다. 다음으로, 호출하기 전에 실행 중인지 확인해야 합니다.

docker run --platform linux/arm64 -p 9000:8080 hello-world:latest

나중에 다음과 같이 함수를 호출할 수 있습니다.

curl http://localhost:9000/2015-03-31/functions/function/invocations -d '{"name": "Joris"}'

결론

상대 가져오기는 까다로울 수 있습니다! 코드를 패키지에 넣어야 합니다. 이를 통해 자신의 패키지 내에서 상대 가져오기를 수행할 수 있습니다. 이렇게 하면 책임을 여러 파일로 분할하여 관리 및 유지 관리가 더 쉬워지므로 코드가 더 깔끔해집니다.

사진: Kaique Rocha

위 내용은 Dockerized 람다 함수로 상대 Python 가져오기의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법Mar 05, 2025 am 09:58 AM

이 튜토리얼은 Python을 사용하여 Zipf의 법칙의 통계 개념을 처리하는 방법을 보여주고 법을 처리 할 때 Python의 읽기 및 대형 텍스트 파일을 정렬하는 효율성을 보여줍니다. ZIPF 분포라는 용어가 무엇을 의미하는지 궁금 할 것입니다. 이 용어를 이해하려면 먼저 Zipf의 법칙을 정의해야합니다. 걱정하지 마세요. 지침을 단순화하려고 노력할 것입니다. Zipf의 법칙 Zipf의 법칙은 단순히 : 큰 자연어 코퍼스에서 가장 자주 발생하는 단어는 두 번째 빈번한 단어, 세 번째 빈번한 단어보다 세 번, 네 번째 빈번한 단어 등 4 배나 자주 발생합니다. 예를 살펴 보겠습니다. 미국 영어로 브라운 코퍼스를 보면 가장 빈번한 단어는 "TH입니다.

HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까?HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까?Mar 10, 2025 pm 06:54 PM

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

파이썬의 이미지 필터링파이썬의 이미지 필터링Mar 03, 2025 am 09:44 AM

시끄러운 이미지를 다루는 것은 특히 휴대폰 또는 저해상도 카메라 사진에서 일반적인 문제입니다. 이 튜토리얼은 OpenCV를 사용 하여이 문제를 해결하기 위해 Python의 이미지 필터링 기술을 탐구합니다. 이미지 필터링 : 강력한 도구 이미지 필터

Python을 사용하여 PDF 문서를 사용하는 방법Python을 사용하여 PDF 문서를 사용하는 방법Mar 02, 2025 am 09:54 AM

PDF 파일은 운영 체제, 읽기 장치 및 소프트웨어 전체에서 일관된 콘텐츠 및 레이아웃과 함께 크로스 플랫폼 호환성에 인기가 있습니다. 그러나 Python Processing Plain Text 파일과 달리 PDF 파일은 더 복잡한 구조를 가진 이진 파일이며 글꼴, 색상 및 이미지와 같은 요소를 포함합니다. 다행히도 Python의 외부 모듈로 PDF 파일을 처리하는 것은 어렵지 않습니다. 이 기사는 PYPDF2 모듈을 사용하여 PDF 파일을 열고 페이지를 인쇄하고 텍스트를 추출하는 방법을 보여줍니다. PDF 파일의 생성 및 편집에 대해서는 저의 다른 튜토리얼을 참조하십시오. 준비 핵심은 외부 모듈 PYPDF2를 사용하는 데 있습니다. 먼저 PIP를 사용하여 설치하십시오. PIP는 p입니다

Django 응용 프로그램에서 Redis를 사용하여 캐시하는 방법Django 응용 프로그램에서 Redis를 사용하여 캐시하는 방법Mar 02, 2025 am 10:10 AM

이 튜토리얼은 Redis 캐싱을 활용하여 특히 Django 프레임 워크 내에서 Python 응용 프로그램의 성능을 향상시키는 방법을 보여줍니다. 우리는 Redis 설치, Django 구성 및 성능 비교를 다루어 Bene을 강조합니다.

Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까?Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까?Mar 10, 2025 pm 06:52 PM

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

파이썬에서 자신의 데이터 구조를 구현하는 방법파이썬에서 자신의 데이터 구조를 구현하는 방법Mar 03, 2025 am 09:28 AM

이 튜토리얼은 Python 3에서 사용자 정의 파이프 라인 데이터 구조를 작성하여 클래스 및 작업자 과부하를 활용하여 향상된 기능을 보여줍니다. 파이프 라인의 유연성은 일련의 기능을 데이터 세트, GE에 적용하는 능력에 있습니다.

파이썬의 병렬 및 동시 프로그래밍 소개파이썬의 병렬 및 동시 프로그래밍 소개Mar 03, 2025 am 10:32 AM

데이터 과학 및 처리가 가장 좋아하는 Python은 고성능 컴퓨팅을위한 풍부한 생태계를 제공합니다. 그러나 Python의 병렬 프로그래밍은 독특한 과제를 제시합니다. 이 튜토리얼은 이러한 과제를 탐구하며 전 세계 해석에 중점을 둡니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

PhpStorm 맥 버전

PhpStorm 맥 버전

최신(2018.2.1) 전문 PHP 통합 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

안전한 시험 브라우저

안전한 시험 브라우저

안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.