찾다
백엔드 개발파이썬 튜토리얼Dockerized 람다 함수로 상대 Python 가져오기

Relative Python imports in a Dockerized lambda function

상대 Python 가져오기는 람다 함수에 까다로울 수 있습니다. 나는 3년 전에 이에 관해 블로그를 썼습니다. 하지만 최근에는 Dockerized 람다 함수에서 동일한 문제가 발생했습니다. 그래서 이제 새로운 블로그를 시작할 때가 되었다고 생각했습니다!

단계를 따라가거나 GitHub에서 직접 결과를 확인할 수 있습니다.

프로젝트 설정

AWS CDK CLI를 설치했는지 확인하세요.

brew install aws-cdk

프로젝트 초기화:

cdk init app --language=typescript

람다 설정

먼저 파일 및 폴더 구조를 만들어야 합니다.

mkdir -p lib/functions/hello-world/hello_world
touch lib/functions/hello-world/hello_world/__init__.py
touch lib/functions/hello-world/requirements.txt
touch lib/functions/hello-world/Dockerfile

이제 다음과 같이 Dockerfile을 채워야 합니다.

FROM public.ecr.aws/lambda/python:3.12
COPY requirements.txt .
COPY hello_world ${LAMBDA_TASK_ROOT}/hello_world
RUN pip install --no-cache-dir -r requirements.txt
CMD ["hello_world.handler"]

Python 3.12 기반의 Python 기본 이미지를 사용하고 있습니다. 다음으로, 요구 사항.txt 파일과 소스 코드를 복사해 보겠습니다. 요구사항.txt 파일에 나열된 모든 종속성을 설치하고 핸들러 메소드가 CMD로 설정되어 있는지 확인합니다.

다음으로 Python 파일을 일부 코드로 채워야 합니다. __init__.py 파일에 다음 내용을 넣을 수 있습니다:

from typing import Dict, Any


def handler(event: Dict[str, Any], context: Any) -> Dict[str, str]:
    name = event.get("name", "World")

    return {
        "Name": name,
        "Message": f"Hello {name}!",
    }


__all__ = [
    "handler"
]

참고: 여기에 사용된 코드는 상대 가져오기를 사용할 수 있습니다. 별도의 패키지에 들어있기 때문에 가능한 일입니다. 이 예에서는 __init__.py 파일의 코드만 보여줍니다. 그러나 여기에서 여러 파일을 사용하여 프로젝트의 유지 관리성을 향상시킬 수 있습니다.

이 예에서는 종속성이 필요하지 않으므로 요구 사항.txt 파일을 비워 둘 수 있습니다. 종속성도 포함하는 방법을 설명하기 위해 이 예에 포함시켰습니다.

IaC를 사용하여 Lambda 함수 생성

폴더와 파일이 제자리에 있으므로 이제 CDK 구성에 Lambda 함수를 추가할 차례입니다. 다음과 같이 간단하게 추가할 수 있습니다.

    new lambda.Function(this, 'Function', {
      functionName: "hello-world",
      code: lambda.Code.fromAssetImage("lib/functions/hello-world", {
        platform: ecr_assets.Platform.LINUX_ARM64,
      }),
      runtime: lambda.Runtime.FROM_IMAGE,
      handler: lambda.Handler.FROM_IMAGE,
      architecture: lambda.Architecture.ARM_64,
      timeout: cdk.Duration.seconds(15),
      memorySize: 128,
    });

이 작업을 수행하려면 다음 가져오기도 필요합니다.

import * as lambda from 'aws-cdk-lib/aws-lambda';
import * as ecr_assets from 'aws-cdk-lib/aws-ecr-assets';

코드 디렉토리가 Dockerfile이 포함된 디렉토리를 가리키는지 확인하고 코드와 함수 자체에 대해 ARM 플랫폼을 선택했는지 확인하세요.

로컬에서 람다 함수 테스트

빠른 피드백이 중요하므로 컨테이너를 로컬에서 실행해야 하는 경우가 있을 수 있습니다. 이를 위해서는 먼저 컨테이너를 구축해야 합니다.

docker build --platform linux/arm64 \
  -t hello-world:latest \
  -f ./lib/functions/hello-world/Dockerfile \
  ./lib/functions/hello-world

이 명령은 프로젝트 루트에서 실행할 수 있습니다. 다음으로, 호출하기 전에 실행 중인지 확인해야 합니다.

docker run --platform linux/arm64 -p 9000:8080 hello-world:latest

나중에 다음과 같이 함수를 호출할 수 있습니다.

curl http://localhost:9000/2015-03-31/functions/function/invocations -d '{"name": "Joris"}'

결론

상대 가져오기는 까다로울 수 있습니다! 코드를 패키지에 넣어야 합니다. 이를 통해 자신의 패키지 내에서 상대 가져오기를 수행할 수 있습니다. 이렇게 하면 책임을 여러 파일로 분할하여 관리 및 유지 관리가 더 쉬워지므로 코드가 더 깔끔해집니다.

사진: Kaique Rocha

위 내용은 Dockerized 람다 함수로 상대 Python 가져오기의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법Mar 05, 2025 am 09:58 AM

이 튜토리얼은 Python을 사용하여 Zipf의 법칙의 통계 개념을 처리하는 방법을 보여주고 법을 처리 할 때 Python의 읽기 및 대형 텍스트 파일을 정렬하는 효율성을 보여줍니다. ZIPF 분포라는 용어가 무엇을 의미하는지 궁금 할 것입니다. 이 용어를 이해하려면 먼저 Zipf의 법칙을 정의해야합니다. 걱정하지 마세요. 지침을 단순화하려고 노력할 것입니다. Zipf의 법칙 Zipf의 법칙은 단순히 : 큰 자연어 코퍼스에서 가장 자주 발생하는 단어는 두 번째 빈번한 단어, 세 번째 빈번한 단어보다 세 번, 네 번째 빈번한 단어 등 4 배나 자주 발생합니다. 예를 살펴 보겠습니다. 미국 영어로 브라운 코퍼스를 보면 가장 빈번한 단어는 "TH입니다.

HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까?HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까?Mar 10, 2025 pm 06:54 PM

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까?Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까?Mar 10, 2025 pm 06:52 PM

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

파이썬 객체의 직렬화 및 사제화 : 1 부파이썬 객체의 직렬화 및 사제화 : 1 부Mar 08, 2025 am 09:39 AM

파이썬 객체의 직렬화 및 사막화는 사소한 프로그램의 주요 측면입니다. 무언가를 Python 파일에 저장하면 구성 파일을 읽거나 HTTP 요청에 응답하는 경우 객체 직렬화 및 사태화를 수행합니다. 어떤 의미에서, 직렬화와 사제화는 세계에서 가장 지루한 것들입니다. 이 모든 형식과 프로토콜에 대해 누가 걱정합니까? 일부 파이썬 객체를 지속하거나 스트리밍하여 나중에 완전히 검색하려고합니다. 이것은 세상을 개념적 차원에서 볼 수있는 좋은 방법입니다. 그러나 실제 수준에서 선택한 직렬화 체계, 형식 또는 프로토콜은 속도, 보안, 유지 보수 상태 및 프로그램의 기타 측면을 결정할 수 있습니다.

파이썬의 수학 모듈 : 통계파이썬의 수학 모듈 : 통계Mar 09, 2025 am 11:40 AM

Python의 통계 모듈은 강력한 데이터 통계 분석 기능을 제공하여 생물 통계 및 비즈니스 분석과 같은 데이터의 전반적인 특성을 빠르게 이해할 수 있도록 도와줍니다. 데이터 포인트를 하나씩 보는 대신 평균 또는 분산과 같은 통계를보고 무시할 수있는 원래 데이터에서 트렌드와 기능을 발견하고 대형 데이터 세트를보다 쉽고 효과적으로 비교하십시오. 이 튜토리얼은 평균을 계산하고 데이터 세트의 분산 정도를 측정하는 방법을 설명합니다. 달리 명시되지 않는 한,이 모듈의 모든 함수는 단순히 평균을 합산하는 대신 평균 () 함수의 계산을 지원합니다. 부동 소수점 번호도 사용할 수 있습니다. 무작위로 가져옵니다 수입 통계 Fracti에서

파이썬으로 전문 오류 처리파이썬으로 전문 오류 처리Mar 04, 2025 am 10:58 AM

이 튜토리얼에서는 전체 시스템 관점에서 Python의 오류 조건을 처리하는 방법을 배웁니다. 오류 처리는 설계의 중요한 측면이며 최종 사용자까지 가장 낮은 수준 (때로는 하드웨어)에서 교차합니다. y라면

인기있는 파이썬 라이브러리와 그 용도는 무엇입니까?인기있는 파이썬 라이브러리와 그 용도는 무엇입니까?Mar 21, 2025 pm 06:46 PM

이 기사는 Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask 및 요청과 같은 인기있는 Python 라이브러리에 대해 설명하고 과학 컴퓨팅, 데이터 분석, 시각화, 기계 학습, 웹 개발 및 H에서의 사용에 대해 자세히 설명합니다.

아름다운 수프로 파이썬에서 웹 페이지를 긁어 내기 : 검색 및 DOM 수정아름다운 수프로 파이썬에서 웹 페이지를 긁어 내기 : 검색 및 DOM 수정Mar 08, 2025 am 10:36 AM

이 튜토리얼은 간단한 나무 탐색을 넘어서 DOM 조작에 중점을 둔 아름다운 수프에 대한 이전 소개를 바탕으로합니다. HTML 구조를 수정하기위한 효율적인 검색 방법과 기술을 탐색하겠습니다. 일반적인 DOM 검색 방법 중 하나는 EX입니다

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!