커피 한잔 사주세요😄
*내 게시물은 Stanford Cars에 대해 설명합니다.
StanfordCars()는 아래와 같이 Stanford Cars 데이터세트를 사용할 수 있습니다.
*메모:
- 첫 번째 인수는 루트(필수 유형:str 또는 pathlib.Path)입니다. *절대경로, 상대경로 모두 가능합니다.
- 두 번째 인수는 분할(Optional-Default:"train"-Type:str)입니다. *"train"(8,144 이미지) 또는 "test"(8,041 이미지)를 설정할 수 있습니다.
- 세 번째 인수는 변환(Optional-Default:None-Type:callable)입니다.
- 네 번째 인수는 target_transform(Optional-Default:None-Type:callable)입니다.
- 다섯 번째 인수는 download(Optional-Default:False-Type:bool)입니다.
*메모:
- True일 경우 원본 URL이 깨져 오류가 발생하므로 False로 유지하세요.
- 따라서 아래와 같이 여기에서 archive.zip, 여기에서 archive.zip, car_devkit.tgz를 data/stanford_cars/에 수동으로 다운로드하여 추출해야 합니다.
*메모:
- cars_test_annos_withlabels (1).mat의 이름을 cars_test_annos_withlabels.mat로 바꿔야 합니다.
- cars_annos.mat 및 cars_annos (2).mat는 필요하지 않으며 중복된 파일도 일부 있습니다.
- 안내도 보실 수 있습니다.
data └-stanford_cars |-cars_test_annos_withlabels.mat |-cars_test | └-*.jpg |-cars_train | └-*.jpg └-devkit |-cars_meta.mat |-cars_test_annos.mat |-cars_train_annos.mat |-eval_train.m |-README.txt └-train_perfect_preds.txt
from torchvision.datasets import StanfordCars train_data = StanfordCars( root="data" ) train_data = StanfordCars( root="data", split="train", transform=None, target_transform=None, download=False ) test_data = StanfordCars( root="data", split="test" ) len(train_data), len(test_data) # (8144, 8041) train_data # Dataset StanfordCars # Number of datapoints: 8144 # Root location: data train_data.root # 'data' train_data._split # 'train' print(train_data.transform) # None print(train_data.target_transform) # None train_data.download # <bound method stanfordcars.download of dataset stanfordcars number datapoints: root location: data> len(train_data.classes), train_data.classes # (196, # ['AM General Hummer SUV 2000', 'Acura RL Sedan 2012', 'Acura TL Sedan 2012', # 'Acura TL Type-S 2008', ..., 'Volvo 240 Sedan 1993', # 'Volvo XC90 SUV 2007', 'smart fortwo Convertible 2012']) train_data[0] # (<pil.image.image image mode="RGB" size="600x400">, 13) train_data[1] # (<pil.image.image image mode="RGB" size="900x675">, 2) train_data[2] # (<pil.image.image image mode="RGB" size="640x480">, 90) train_data[3] # (<pil.image.image image mode="RGB" size="2100x1386">, 133) train_data[4] # (<pil.image.image image mode="RGB" size="144x108">, 105) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(12, 5)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, (im, lab) in zip(range(1, 11), data): plt.subplot(2, 5, i) plt.imshow(X=im) plt.title(label=lab) plt.tight_layout() plt.show() show_images(data=train_data, main_title="train_data") show_images(data=test_data, main_title="test_data") show_images(data=train_data, ims=train_ims, main_title="train_data") show_images(data=train_data, ims=val_ims, main_title="val_data") show_images(data=test_data, ims=test_ims, main_title="test_data") </pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></bound>
위 내용은 PyTorch의 스탠포드 자동차의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python 또는 C를 선택하는 것은 프로젝트 요구 사항에 따라 다릅니다. 1) 빠른 개발, 데이터 처리 및 프로토 타입 설계가 필요한 경우 Python을 선택하십시오. 2) 고성능, 낮은 대기 시간 및 근접 하드웨어 제어가 필요한 경우 C를 선택하십시오.

매일 2 시간의 파이썬 학습을 투자하면 프로그래밍 기술을 효과적으로 향상시킬 수 있습니다. 1. 새로운 지식 배우기 : 문서를 읽거나 자습서를 시청하십시오. 2. 연습 : 코드를 작성하고 완전한 연습을합니다. 3. 검토 : 배운 내용을 통합하십시오. 4. 프로젝트 실무 : 실제 프로젝트에서 배운 것을 적용하십시오. 이러한 구조화 된 학습 계획은 파이썬을 체계적으로 마스터하고 경력 목표를 달성하는 데 도움이 될 수 있습니다.

2 시간 이내에 Python을 효율적으로 학습하는 방법 : 1. 기본 지식을 검토하고 Python 설치 및 기본 구문에 익숙한 지 확인하십시오. 2. 변수, 목록, 기능 등과 같은 파이썬의 핵심 개념을 이해합니다. 3. 예제를 사용하여 마스터 기본 및 고급 사용; 4. 일반적인 오류 및 디버깅 기술을 배우십시오. 5. 목록 이해력 사용 및 PEP8 스타일 안내서와 같은 성능 최적화 및 모범 사례를 적용합니다.

Python은 초보자 및 데이터 과학에 적합하며 C는 시스템 프로그래밍 및 게임 개발에 적합합니다. 1. 파이썬은 간단하고 사용하기 쉽고 데이터 과학 및 웹 개발에 적합합니다. 2.C는 게임 개발 및 시스템 프로그래밍에 적합한 고성능 및 제어를 제공합니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Python은 데이터 과학 및 빠른 개발에 더 적합한 반면 C는 고성능 및 시스템 프로그래밍에 더 적합합니다. 1. Python Syntax는 간결하고 학습하기 쉽고 데이터 처리 및 과학 컴퓨팅에 적합합니다. 2.C는 복잡한 구문을 가지고 있지만 성능이 뛰어나고 게임 개발 및 시스템 프로그래밍에 종종 사용됩니다.

파이썬을 배우기 위해 하루에 2 시간을 투자하는 것이 가능합니다. 1. 새로운 지식 배우기 : 목록 및 사전과 같은 1 시간 안에 새로운 개념을 배우십시오. 2. 연습 및 연습 : 1 시간을 사용하여 소규모 프로그램 작성과 같은 프로그래밍 연습을 수행하십시오. 합리적인 계획과 인내를 통해 짧은 시간에 Python의 핵심 개념을 마스터 할 수 있습니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

드림위버 CS6
시각적 웹 개발 도구
