>백엔드 개발 >파이썬 튜토리얼 >완전한 Python 로깅 가이드: 모범 사례 및 구현

완전한 Python 로깅 가이드: 모범 사례 및 구현

Linda Hamilton
Linda Hamilton원래의
2024-12-23 08:19:13872검색

Complete Python Logging Guide: Best Practices & Implementation

적절한 로깅이 중요한 이유

기술적인 세부 사항을 살펴보기 전에 적절한 로깅이 왜 중요한지 알아보겠습니다.

  • 프로덕션에서 효과적인 디버깅 가능
  • 애플리케이션 동작에 대한 통찰력 제공
  • 성과 모니터링 촉진
  • 보안 사고 추적에 도움
  • 규정 준수 요구 사항 지원
  • 유지보수 효율성 향상

Python 로깅으로 빠른 시작

Python 로깅을 처음 접하는 분들을 위해 logging.basicConfig를 사용한 기본 예를 소개합니다.

# Simple python logging example
import logging

# Basic logger in python example
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)

# Create a logger
logger = logging.getLogger(__name__)

# Logger in python example
logger.info("This is an information message")
logger.warning("This is a warning message")

이 예에서는 Python 로깅 모듈의 기본 사항을 보여주고 애플리케이션에서 Python 로거 로깅을 사용하는 방법을 보여줍니다.

Python의 로깅 모듈 시작하기

기본 설정

간단한 로깅 구성부터 시작해 보겠습니다.

import logging

# Basic configuration
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)

# Your first logger
logger = logging.getLogger(__name__)

# Using the logger
logger.info("Application started")
logger.warning("Watch out!")
logger.error("Something went wrong")

로그 수준 이해

Python 로깅에는 5가지 표준 수준이 제공됩니다.

Level Numeric Value When to Use
DEBUG 10 Detailed information for diagnosing problems
INFO 20 General operational events
WARNING 30 Something unexpected happened
ERROR 40 More serious problem
CRITICAL 50 Program may not be able to continue

print() 문 너머

인쇄문 대신 로깅을 선택하는 이유는 무엇입니까?

  • 더 나은 분류를 위한 심각도 수준
  • 타임스탬프 정보
  • 소스정보(파일,줄번호)
  • 구성 가능한 출력 대상
  • 제작 준비가 완료된 필터링
  • 스레드 안전성

로깅 시스템 구성

기본 구성 옵션

# Simple python logging example
import logging

# Basic logger in python example
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)

# Create a logger
logger = logging.getLogger(__name__)

# Logger in python example
logger.info("This is an information message")
logger.warning("This is a warning message")

고급 구성

더 복잡한 애플리케이션의 경우:

import logging

# Basic configuration
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)

# Your first logger
logger = logging.getLogger(__name__)

# Using the logger
logger.info("Application started")
logger.warning("Watch out!")
logger.error("Something went wrong")

고급 로깅 ​​작업

구조화된 로깅

구조화된 로깅은 로그 분석 및 모니터링에 필수적인 일관되고 기계가 읽을 수 있는 형식을 제공합니다. 구조적 로깅 패턴과 모범 사례에 대한 포괄적인 개요를 보려면 구조적 로깅 가이드를 확인하세요. Python으로 구조화된 로깅을 구현해 보겠습니다.

logging.basicConfig(
    filename='app.log',
    filemode='w',
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    level=logging.DEBUG,
    datefmt='%Y-%m-%d %H:%M:%S'
)

오류 관리

프로덕션 문제를 디버깅하려면 적절한 오류 로깅이 중요합니다. 포괄적인 접근 방식은 다음과 같습니다.

config = {
    'version': 1,
    'formatters': {
        'detailed': {
            'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
        }
    },
    'handlers': {
        'console': {
            'class': 'logging.StreamHandler',
            'level': 'INFO',
            'formatter': 'detailed'
        },
        'file': {
            'class': 'logging.FileHandler',
            'filename': 'app.log',
            'level': 'DEBUG',
            'formatter': 'detailed'
        }
    },
    'loggers': {
        'myapp': {
            'handlers': ['console', 'file'],
            'level': 'DEBUG',
            'propagate': True
        }
    }
}

logging.config.dictConfig(config)

동시 로깅

멀티 스레드 애플리케이션에 로그인할 때 스레드 안전성을 보장해야 합니다.

import json
import logging
from datetime import datetime

class JSONFormatter(logging.Formatter):
    def __init__(self):
        super().__init__()

    def format(self, record):
        # Create base log record
        log_obj = {
            "timestamp": self.formatTime(record, self.datefmt),
            "name": record.name,
            "level": record.levelname,
            "message": record.getMessage(),
            "module": record.module,
            "function": record.funcName,
            "line": record.lineno
        }

        # Add exception info if present
        if record.exc_info:
            log_obj["exception"] = self.formatException(record.exc_info)

        # Add custom fields from extra
        if hasattr(record, "extra_fields"):
            log_obj.update(record.extra_fields)

        return json.dumps(log_obj)

# Usage Example
logger = logging.getLogger(__name__)
handler = logging.StreamHandler()
handler.setFormatter(JSONFormatter())
logger.addHandler(handler)

# Log with extra fields
logger.info("User logged in", extra={"extra_fields": {"user_id": "123", "ip": "192.168.1.1"}})

다양한 환경에서 로그인

다양한 애플리케이션 환경에는 특정 로깅 접근 방식이 필요합니다. 웹 애플리케이션, 마이크로서비스, 백그라운드 작업 등 어떤 작업을 하든 각 환경에는 고유한 로깅 요구 사항과 모범 사례가 있습니다. 다양한 배포 시나리오에서 효과적인 로깅을 구현하는 방법을 살펴보겠습니다.

웹 애플리케이션 로깅

Django 로깅 구성

다음은 포괄적인 Django 로깅 설정입니다.

import traceback
import sys
from contextlib import contextmanager

class ErrorLogger:
    def __init__(self, logger):
        self.logger = logger

    @contextmanager
    def error_context(self, operation_name, **context):
        """Context manager for error logging with additional context"""
        try:
            yield
        except Exception as e:
            # Capture the current stack trace
            exc_type, exc_value, exc_traceback = sys.exc_info()

            # Format error details
            error_details = {
                "operation": operation_name,
                "error_type": exc_type.__name__,
                "error_message": str(exc_value),
                "context": context,
                "stack_trace": traceback.format_exception(exc_type, exc_value, exc_traceback)
            }

            # Log the error with full context
            self.logger.error(
                f"Error in {operation_name}: {str(exc_value)}",
                extra={"error_details": error_details}
            )

            # Re-raise the exception
            raise

# Usage Example
logger = logging.getLogger(__name__)
error_logger = ErrorLogger(logger)

with error_logger.error_context("user_authentication", user_id="123", attempt=2):
    # Your code that might raise an exception
    authenticate_user(user_id)

플라스크 로깅 설정

Flask는 사용자 정의할 수 있는 자체 로깅 시스템을 제공합니다.

import threading
import logging
from queue import Queue
from logging.handlers import QueueHandler, QueueListener

def setup_thread_safe_logging():
    """Set up thread-safe logging with a queue"""
    # Create the queue
    log_queue = Queue()

    # Create handlers
    console_handler = logging.StreamHandler()
    file_handler = logging.FileHandler('app.log')

    # Create queue handler and listener
    queue_handler = QueueHandler(log_queue)
    listener = QueueListener(
        log_queue,
        console_handler,
        file_handler,
        respect_handler_level=True
    )

    # Configure root logger
    root_logger = logging.getLogger()
    root_logger.addHandler(queue_handler)

    # Start the listener in a separate thread
    listener.start()

    return listener

# Usage
listener = setup_thread_safe_logging()

def worker_function():
    logger = logging.getLogger(__name__)
    logger.info(f"Worker thread {threading.current_thread().name} starting")
    # Do work...
    logger.info(f"Worker thread {threading.current_thread().name} finished")

# Create and start threads
threads = [
    threading.Thread(target=worker_function)
    for _ in range(3)
]
for thread in threads:
    thread.start()

FastAPI 로깅 방식

FastAPI는 일부 미들웨어 개선 사항을 통해 Python의 로깅을 활용할 수 있습니다.

# settings.py
LOGGING = {
    'version': 1,
    'disable_existing_loggers': False,
    'formatters': {
        'verbose': {
            'format': '{levelname} {asctime} {module} {process:d} {thread:d} {message}',
            'style': '{',
        },
        'simple': {
            'format': '{levelname} {message}',
            'style': '{',
        },
    },
    'filters': {
        'require_debug_true': {
            '()': 'django.utils.log.RequireDebugTrue',
        },
    },
    'handlers': {
        'console': {
            'level': 'INFO',
            'filters': ['require_debug_true'],
            'class': 'logging.StreamHandler',
            'formatter': 'simple'
        },
        'file': {
            'level': 'ERROR',
            'class': 'logging.FileHandler',
            'filename': 'django-errors.log',
            'formatter': 'verbose'
        },
        'mail_admins': {
            'level': 'ERROR',
            'class': 'django.utils.log.AdminEmailHandler',
            'include_html': True,
        }
    },
    'loggers': {
        'django': {
            'handlers': ['console'],
            'propagate': True,
        },
        'django.request': {
            'handlers': ['file', 'mail_admins'],
            'level': 'ERROR',
            'propagate': False,
        },
        'myapp': {
            'handlers': ['console', 'file'],
            'level': 'INFO',
        }
    }
}

마이크로서비스 로깅

마이크로서비스의 경우 분산 추적 및 상관 관계 ID가 필수적입니다.

import logging
from logging.handlers import RotatingFileHandler
from flask import Flask, request

app = Flask(__name__)

def setup_logger():
    # Create formatter
    formatter = logging.Formatter(
        '[%(asctime)s] %(levelname)s in %(module)s: %(message)s'
    )

    # File Handler
    file_handler = RotatingFileHandler(
        'flask_app.log',
        maxBytes=10485760,  # 10MB
        backupCount=10
    )
    file_handler.setLevel(logging.INFO)
    file_handler.setFormatter(formatter)

    # Add request context
    class RequestFormatter(logging.Formatter):
        def format(self, record):
            record.url = request.url
            record.remote_addr = request.remote_addr
            return super().format(record)

    # Configure app logger
    app.logger.addHandler(file_handler)
    app.logger.setLevel(logging.INFO)

    return app.logger

# Usage in routes
@app.route('/api/endpoint')
def api_endpoint():
    app.logger.info(f'Request received from {request.remote_addr}')
    # Your code here
    return jsonify({'status': 'success'})

백그라운드 작업 로깅

백그라운드 작업의 경우 적절한 로그 처리 및 순환을 보장해야 합니다.

from fastapi import FastAPI, Request
from typing import Callable
import logging
import time

app = FastAPI()

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Middleware for request logging
@app.middleware("http")
async def log_requests(request: Request, call_next: Callable):
    start_time = time.time()
    response = await call_next(request)
    duration = time.time() - start_time

    log_dict = {
        "url": str(request.url),
        "method": request.method,
        "client_ip": request.client.host,
        "duration": f"{duration:.2f}s",
        "status_code": response.status_code
    }

    logger.info(f"Request processed: {log_dict}")
    return response

# Example endpoint with logging
@app.get("/items/{item_id}")
async def read_item(item_id: int):
    logger.info(f"Retrieving item {item_id}")
    # Your code here
    return {"item_id": item_id}

일반적인 로깅 패턴 및 솔루션

ID 추적 요청

애플리케이션 전반에 걸쳐 요청 추적 구현:

import logging
import contextvars
from uuid import uuid4

# Create context variable for trace ID
trace_id_var = contextvars.ContextVar('trace_id', default=None)

class TraceIDFilter(logging.Filter):
    def filter(self, record):
        trace_id = trace_id_var.get()
        record.trace_id = trace_id if trace_id else 'no_trace'
        return True

def setup_microservice_logging(service_name):
    logger = logging.getLogger(service_name)

    # Create formatter with trace ID
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - [%(trace_id)s] - %(levelname)s - %(message)s'
    )

    # Add handlers with trace ID filter
    handler = logging.StreamHandler()
    handler.setFormatter(formatter)
    handler.addFilter(TraceIDFilter())

    logger.addHandler(handler)
    logger.setLevel(logging.INFO)

    return logger

# Usage in microservice
logger = setup_microservice_logging('order_service')

def process_order(order_data):
    # Generate or get trace ID from request
    trace_id_var.set(str(uuid4()))

    logger.info("Starting order processing", extra={
        'order_id': order_data['id'],
        'customer_id': order_data['customer_id']
    })

    # Process order...

    logger.info("Order processed successfully")

사용자 활동 로깅

사용자 활동을 안전하게 추적:

# Simple python logging example
import logging

# Basic logger in python example
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)

# Create a logger
logger = logging.getLogger(__name__)

# Logger in python example
logger.info("This is an information message")
logger.warning("This is a warning message")

문제 해결 및 디버깅

로깅 문제를 효과적으로 해결하려면 일반적인 문제와 해결 방법을 이해해야 합니다. 이 섹션에서는 로깅을 구현할 때 개발자가 직면하는 가장 빈번한 문제를 다루고 로깅 구성 디버깅을 위한 실용적인 솔루션을 제공합니다.

일반적인 로깅 문제

누락된 로그 항목

import logging

# Basic configuration
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)

# Your first logger
logger = logging.getLogger(__name__)

# Using the logger
logger.info("Application started")
logger.warning("Watch out!")
logger.error("Something went wrong")

성능 병목 현상

logging.basicConfig(
    filename='app.log',
    filemode='w',
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    level=logging.DEBUG,
    datefmt='%Y-%m-%d %H:%M:%S'
)

일반적인 로깅 문제 및 솔루션

구성 문제

config = {
    'version': 1,
    'formatters': {
        'detailed': {
            'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
        }
    },
    'handlers': {
        'console': {
            'class': 'logging.StreamHandler',
            'level': 'INFO',
            'formatter': 'detailed'
        },
        'file': {
            'class': 'logging.FileHandler',
            'filename': 'app.log',
            'level': 'DEBUG',
            'formatter': 'detailed'
        }
    },
    'loggers': {
        'myapp': {
            'handlers': ['console', 'file'],
            'level': 'DEBUG',
            'propagate': True
        }
    }
}

logging.config.dictConfig(config)

메모리 및 리소스 문제

import json
import logging
from datetime import datetime

class JSONFormatter(logging.Formatter):
    def __init__(self):
        super().__init__()

    def format(self, record):
        # Create base log record
        log_obj = {
            "timestamp": self.formatTime(record, self.datefmt),
            "name": record.name,
            "level": record.levelname,
            "message": record.getMessage(),
            "module": record.module,
            "function": record.funcName,
            "line": record.lineno
        }

        # Add exception info if present
        if record.exc_info:
            log_obj["exception"] = self.formatException(record.exc_info)

        # Add custom fields from extra
        if hasattr(record, "extra_fields"):
            log_obj.update(record.extra_fields)

        return json.dumps(log_obj)

# Usage Example
logger = logging.getLogger(__name__)
handler = logging.StreamHandler()
handler.setFormatter(JSONFormatter())
logger.addHandler(handler)

# Log with extra fields
logger.info("User logged in", extra={"extra_fields": {"user_id": "123", "ip": "192.168.1.1"}})

형식 문자열 및 성능 문제

import traceback
import sys
from contextlib import contextmanager

class ErrorLogger:
    def __init__(self, logger):
        self.logger = logger

    @contextmanager
    def error_context(self, operation_name, **context):
        """Context manager for error logging with additional context"""
        try:
            yield
        except Exception as e:
            # Capture the current stack trace
            exc_type, exc_value, exc_traceback = sys.exc_info()

            # Format error details
            error_details = {
                "operation": operation_name,
                "error_type": exc_type.__name__,
                "error_message": str(exc_value),
                "context": context,
                "stack_trace": traceback.format_exception(exc_type, exc_value, exc_traceback)
            }

            # Log the error with full context
            self.logger.error(
                f"Error in {operation_name}: {str(exc_value)}",
                extra={"error_details": error_details}
            )

            # Re-raise the exception
            raise

# Usage Example
logger = logging.getLogger(__name__)
error_logger = ErrorLogger(logger)

with error_logger.error_context("user_authentication", user_id="123", attempt=2):
    # Your code that might raise an exception
    authenticate_user(user_id)

핸들러 구성 트랩

import threading
import logging
from queue import Queue
from logging.handlers import QueueHandler, QueueListener

def setup_thread_safe_logging():
    """Set up thread-safe logging with a queue"""
    # Create the queue
    log_queue = Queue()

    # Create handlers
    console_handler = logging.StreamHandler()
    file_handler = logging.FileHandler('app.log')

    # Create queue handler and listener
    queue_handler = QueueHandler(log_queue)
    listener = QueueListener(
        log_queue,
        console_handler,
        file_handler,
        respect_handler_level=True
    )

    # Configure root logger
    root_logger = logging.getLogger()
    root_logger.addHandler(queue_handler)

    # Start the listener in a separate thread
    listener.start()

    return listener

# Usage
listener = setup_thread_safe_logging()

def worker_function():
    logger = logging.getLogger(__name__)
    logger.info(f"Worker thread {threading.current_thread().name} starting")
    # Do work...
    logger.info(f"Worker thread {threading.current_thread().name} finished")

# Create and start threads
threads = [
    threading.Thread(target=worker_function)
    for _ in range(3)
]
for thread in threads:
    thread.start()

스레드 안전 고려 사항

# settings.py
LOGGING = {
    'version': 1,
    'disable_existing_loggers': False,
    'formatters': {
        'verbose': {
            'format': '{levelname} {asctime} {module} {process:d} {thread:d} {message}',
            'style': '{',
        },
        'simple': {
            'format': '{levelname} {message}',
            'style': '{',
        },
    },
    'filters': {
        'require_debug_true': {
            '()': 'django.utils.log.RequireDebugTrue',
        },
    },
    'handlers': {
        'console': {
            'level': 'INFO',
            'filters': ['require_debug_true'],
            'class': 'logging.StreamHandler',
            'formatter': 'simple'
        },
        'file': {
            'level': 'ERROR',
            'class': 'logging.FileHandler',
            'filename': 'django-errors.log',
            'formatter': 'verbose'
        },
        'mail_admins': {
            'level': 'ERROR',
            'class': 'django.utils.log.AdminEmailHandler',
            'include_html': True,
        }
    },
    'loggers': {
        'django': {
            'handlers': ['console'],
            'propagate': True,
        },
        'django.request': {
            'handlers': ['file', 'mail_admins'],
            'level': 'ERROR',
            'propagate': False,
        },
        'myapp': {
            'handlers': ['console', 'file'],
            'level': 'INFO',
        }
    }
}

구성 파일 문제

import logging
from logging.handlers import RotatingFileHandler
from flask import Flask, request

app = Flask(__name__)

def setup_logger():
    # Create formatter
    formatter = logging.Formatter(
        '[%(asctime)s] %(levelname)s in %(module)s: %(message)s'
    )

    # File Handler
    file_handler = RotatingFileHandler(
        'flask_app.log',
        maxBytes=10485760,  # 10MB
        backupCount=10
    )
    file_handler.setLevel(logging.INFO)
    file_handler.setFormatter(formatter)

    # Add request context
    class RequestFormatter(logging.Formatter):
        def format(self, record):
            record.url = request.url
            record.remote_addr = request.remote_addr
            return super().format(record)

    # Configure app logger
    app.logger.addHandler(file_handler)
    app.logger.setLevel(logging.INFO)

    return app.logger

# Usage in routes
@app.route('/api/endpoint')
def api_endpoint():
    app.logger.info(f'Request received from {request.remote_addr}')
    # Your code here
    return jsonify({'status': 'success'})

로깅 테스트

로그를 사용한 단위 테스트

from fastapi import FastAPI, Request
from typing import Callable
import logging
import time

app = FastAPI()

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Middleware for request logging
@app.middleware("http")
async def log_requests(request: Request, call_next: Callable):
    start_time = time.time()
    response = await call_next(request)
    duration = time.time() - start_time

    log_dict = {
        "url": str(request.url),
        "method": request.method,
        "client_ip": request.client.host,
        "duration": f"{duration:.2f}s",
        "status_code": response.status_code
    }

    logger.info(f"Request processed: {log_dict}")
    return response

# Example endpoint with logging
@app.get("/items/{item_id}")
async def read_item(item_id: int):
    logger.info(f"Retrieving item {item_id}")
    # Your code here
    return {"item_id": item_id}

모의 로거를 사용한 테스트

import logging
import contextvars
from uuid import uuid4

# Create context variable for trace ID
trace_id_var = contextvars.ContextVar('trace_id', default=None)

class TraceIDFilter(logging.Filter):
    def filter(self, record):
        trace_id = trace_id_var.get()
        record.trace_id = trace_id if trace_id else 'no_trace'
        return True

def setup_microservice_logging(service_name):
    logger = logging.getLogger(service_name)

    # Create formatter with trace ID
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - [%(trace_id)s] - %(levelname)s - %(message)s'
    )

    # Add handlers with trace ID filter
    handler = logging.StreamHandler()
    handler.setFormatter(formatter)
    handler.addFilter(TraceIDFilter())

    logger.addHandler(handler)
    logger.setLevel(logging.INFO)

    return logger

# Usage in microservice
logger = setup_microservice_logging('order_service')

def process_order(order_data):
    # Generate or get trace ID from request
    trace_id_var.set(str(uuid4()))

    logger.info("Starting order processing", extra={
        'order_id': order_data['id'],
        'customer_id': order_data['customer_id']
    })

    # Process order...

    logger.info("Order processed successfully")

대체 로깅 솔루션

로그루

Loguru는 강력한 기능을 갖춘 간단한 로깅 인터페이스를 제공합니다.

from logging.handlers import RotatingFileHandler
import logging
import threading
from datetime import datetime

class BackgroundTaskLogger:
    def __init__(self, task_name):
        self.logger = logging.getLogger(f'background_task.{task_name}')
        self.setup_logging()

    def setup_logging(self):
        # Create logs directory if it doesn't exist
        import os
        os.makedirs('logs', exist_ok=True)

        # Setup rotating file handler
        handler = RotatingFileHandler(
            filename=f'logs/task_{datetime.now():%Y%m%d}.log',
            maxBytes=5*1024*1024,  # 5MB
            backupCount=5
        )

        # Create formatter
        formatter = logging.Formatter(
            '%(asctime)s - [%(threadName)s] - %(levelname)s - %(message)s'
        )
        handler.setFormatter(formatter)

        self.logger.addHandler(handler)
        self.logger.setLevel(logging.INFO)

    def log_task_status(self, status, **kwargs):
        """Log task status with additional context"""
        extra = {
            'thread_id': threading.get_ident(),
            'timestamp': datetime.now().isoformat(),
            **kwargs
        }
        self.logger.info(f"Task status: {status}", extra=extra)

# Usage example
def background_job():
    logger = BackgroundTaskLogger('data_processing')
    try:
        logger.log_task_status('started', job_id=123)
        # Do some work...
        logger.log_task_status('completed', records_processed=1000)
    except Exception as e:
        logger.logger.error(f"Task failed: {str(e)}", exc_info=True)

구조체로그

Structlog는 컨텍스트가 있는 구조적 로깅에 탁월합니다.

import logging
from contextlib import contextmanager
import threading
import uuid

# Store request ID in thread-local storage
_request_id = threading.local()

class RequestIDFilter(logging.Filter):
    def filter(self, record):
        record.request_id = getattr(_request_id, 'id', 'no_request_id')
        return True

@contextmanager
def request_context(request_id=None):
    """Context manager for request tracking"""
    if request_id is None:
        request_id = str(uuid.uuid4())

    old_id = getattr(_request_id, 'id', None)
    _request_id.id = request_id
    try:
        yield request_id
    finally:
        if old_id is None:
            del _request_id.id
        else:
            _request_id.id = old_id

# Setup logging with request ID
def setup_request_logging():
    logger = logging.getLogger()
    formatter = logging.Formatter(
        '%(asctime)s - [%(request_id)s] - %(levelname)s - %(message)s'
    )

    handler = logging.StreamHandler()
    handler.setFormatter(formatter)
    handler.addFilter(RequestIDFilter())

    logger.addHandler(handler)
    return logger

# Usage example
logger = setup_request_logging()

def process_request(data):
    with request_context() as request_id:
        logger.info("Processing request", extra={
            'data': data,
            'operation': 'process_request'
        })
        # Process the request...
        logger.info("Request processed successfully")

Python-JSON-로거

JSON 형식 로깅의 경우:

# Simple python logging example
import logging

# Basic logger in python example
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)

# Create a logger
logger = logging.getLogger(__name__)

# Logger in python example
logger.info("This is an information message")
logger.warning("This is a warning message")

모범 사례 및 지침

로깅 표준

import logging

# Basic configuration
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)

# Your first logger
logger = logging.getLogger(__name__)

# Using the logger
logger.info("Application started")
logger.warning("Watch out!")
logger.error("Something went wrong")

성능 최적화

logging.basicConfig(
    filename='app.log',
    filemode='w',
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    level=logging.DEBUG,
    datefmt='%Y-%m-%d %H:%M:%S'
)

사례 연구

실제 구현: 전자상거래 플랫폼

config = {
    'version': 1,
    'formatters': {
        'detailed': {
            'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
        }
    },
    'handlers': {
        'console': {
            'class': 'logging.StreamHandler',
            'level': 'INFO',
            'formatter': 'detailed'
        },
        'file': {
            'class': 'logging.FileHandler',
            'filename': 'app.log',
            'level': 'DEBUG',
            'formatter': 'detailed'
        }
    },
    'loggers': {
        'myapp': {
            'handlers': ['console', 'file'],
            'level': 'DEBUG',
            'propagate': True
        }
    }
}

logging.config.dictConfig(config)

마이크로서비스 아키텍처 예

import json
import logging
from datetime import datetime

class JSONFormatter(logging.Formatter):
    def __init__(self):
        super().__init__()

    def format(self, record):
        # Create base log record
        log_obj = {
            "timestamp": self.formatTime(record, self.datefmt),
            "name": record.name,
            "level": record.levelname,
            "message": record.getMessage(),
            "module": record.module,
            "function": record.funcName,
            "line": record.lineno
        }

        # Add exception info if present
        if record.exc_info:
            log_obj["exception"] = self.formatException(record.exc_info)

        # Add custom fields from extra
        if hasattr(record, "extra_fields"):
            log_obj.update(record.extra_fields)

        return json.dumps(log_obj)

# Usage Example
logger = logging.getLogger(__name__)
handler = logging.StreamHandler()
handler.setFormatter(JSONFormatter())
logger.addHandler(handler)

# Log with extra fields
logger.info("User logged in", extra={"extra_fields": {"user_id": "123", "ip": "192.168.1.1"}})

결론

주요 시사점

  1. 기초가 먼저: 적절한 기본 구성부터 시작하세요
  • 적절한 로그 수준 설정
  • 의미 있는 형식 구성
  • 적절한 핸들러 선택
  1. 구조적 접근 방식: 더 나은 분석을 위해 구조적 로깅 사용
  • 일관적인 로그 형식
  • 상황별 정보
  • 기계로 분석 가능한 출력
  1. 성능 문제: 프로덕션을 위한 로깅 최적화
  • 로그 순환 구현
  • 필요할 때 비동기 로깅 사용
  • 샘플링 전략 고려
  1. 보안 인식: 민감한 정보 보호
    • 민감한 데이터 필터링
    • 적절한 액세스 제어 구현
    • 규정 준수 요구 사항을 따르세요

구현 체크리스트

import traceback
import sys
from contextlib import contextmanager

class ErrorLogger:
    def __init__(self, logger):
        self.logger = logger

    @contextmanager
    def error_context(self, operation_name, **context):
        """Context manager for error logging with additional context"""
        try:
            yield
        except Exception as e:
            # Capture the current stack trace
            exc_type, exc_value, exc_traceback = sys.exc_info()

            # Format error details
            error_details = {
                "operation": operation_name,
                "error_type": exc_type.__name__,
                "error_message": str(exc_value),
                "context": context,
                "stack_trace": traceback.format_exception(exc_type, exc_value, exc_traceback)
            }

            # Log the error with full context
            self.logger.error(
                f"Error in {operation_name}: {str(exc_value)}",
                extra={"error_details": error_details}
            )

            # Re-raise the exception
            raise

# Usage Example
logger = logging.getLogger(__name__)
error_logger = ErrorLogger(logger)

with error_logger.error_context("user_authentication", user_id="123", attempt=2):
    # Your code that might raise an exception
    authenticate_user(user_id)

추가 리소스

  1. 공식 문서:
  • Python 로깅 HOWTO
  • 로깅 요리책
  1. 도구 및 라이브러리:
  • 로그루 문서
  • Structlog 문서
  • Python-JSON-로거

이 가이드에서는 기본 설정부터 고급 구현까지 Python 로깅의 필수 측면을 다룹니다. 로깅은 애플리케이션 관찰 및 유지 관리에 필수적인 부분이라는 점을 기억하세요. 최상의 결과를 얻으려면 신중하게 구현하고 정기적으로 유지관리하세요.

애플리케이션이 발전하고 새로운 요구 사항이 등장함에 따라 로깅 구현을 정기적으로 검토하고 업데이트하는 것을 잊지 마세요.

위 내용은 완전한 Python 로깅 가이드: 모범 사례 및 구현의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명:
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.