적절한 로깅이 중요한 이유
기술적인 세부 사항을 살펴보기 전에 적절한 로깅이 왜 중요한지 알아보겠습니다.
- 프로덕션에서 효과적인 디버깅 가능
- 애플리케이션 동작에 대한 통찰력 제공
- 성과 모니터링 촉진
- 보안 사고 추적에 도움
- 규정 준수 요구 사항 지원
- 유지보수 효율성 향상
Python 로깅으로 빠른 시작
Python 로깅을 처음 접하는 분들을 위해 logging.basicConfig를 사용한 기본 예를 소개합니다.
# Simple python logging example import logging # Basic logger in python example logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) # Create a logger logger = logging.getLogger(__name__) # Logger in python example logger.info("This is an information message") logger.warning("This is a warning message")
이 예에서는 Python 로깅 모듈의 기본 사항을 보여주고 애플리케이션에서 Python 로거 로깅을 사용하는 방법을 보여줍니다.
Python의 로깅 모듈 시작하기
기본 설정
간단한 로깅 구성부터 시작해 보겠습니다.
import logging # Basic configuration logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) # Your first logger logger = logging.getLogger(__name__) # Using the logger logger.info("Application started") logger.warning("Watch out!") logger.error("Something went wrong")
로그 수준 이해
Python 로깅에는 5가지 표준 수준이 제공됩니다.
Level | Numeric Value | When to Use |
---|---|---|
DEBUG | 10 | Detailed information for diagnosing problems |
INFO | 20 | General operational events |
WARNING | 30 | Something unexpected happened |
ERROR | 40 | More serious problem |
CRITICAL | 50 | Program may not be able to continue |
print() 문 너머
인쇄문 대신 로깅을 선택하는 이유는 무엇입니까?
- 더 나은 분류를 위한 심각도 수준
- 타임스탬프 정보
- 소스정보(파일,줄번호)
- 구성 가능한 출력 대상
- 제작 준비가 완료된 필터링
- 스레드 안전성
로깅 시스템 구성
기본 구성 옵션
# Simple python logging example import logging # Basic logger in python example logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) # Create a logger logger = logging.getLogger(__name__) # Logger in python example logger.info("This is an information message") logger.warning("This is a warning message")
고급 구성
더 복잡한 애플리케이션의 경우:
import logging # Basic configuration logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) # Your first logger logger = logging.getLogger(__name__) # Using the logger logger.info("Application started") logger.warning("Watch out!") logger.error("Something went wrong")
고급 로깅 작업
구조화된 로깅
구조화된 로깅은 로그 분석 및 모니터링에 필수적인 일관되고 기계가 읽을 수 있는 형식을 제공합니다. 구조적 로깅 패턴과 모범 사례에 대한 포괄적인 개요를 보려면 구조적 로깅 가이드를 확인하세요. Python으로 구조화된 로깅을 구현해 보겠습니다.
logging.basicConfig( filename='app.log', filemode='w', format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.DEBUG, datefmt='%Y-%m-%d %H:%M:%S' )
오류 관리
프로덕션 문제를 디버깅하려면 적절한 오류 로깅이 중요합니다. 포괄적인 접근 방식은 다음과 같습니다.
config = { 'version': 1, 'formatters': { 'detailed': { 'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s' } }, 'handlers': { 'console': { 'class': 'logging.StreamHandler', 'level': 'INFO', 'formatter': 'detailed' }, 'file': { 'class': 'logging.FileHandler', 'filename': 'app.log', 'level': 'DEBUG', 'formatter': 'detailed' } }, 'loggers': { 'myapp': { 'handlers': ['console', 'file'], 'level': 'DEBUG', 'propagate': True } } } logging.config.dictConfig(config)
동시 로깅
멀티 스레드 애플리케이션에 로그인할 때 스레드 안전성을 보장해야 합니다.
import json import logging from datetime import datetime class JSONFormatter(logging.Formatter): def __init__(self): super().__init__() def format(self, record): # Create base log record log_obj = { "timestamp": self.formatTime(record, self.datefmt), "name": record.name, "level": record.levelname, "message": record.getMessage(), "module": record.module, "function": record.funcName, "line": record.lineno } # Add exception info if present if record.exc_info: log_obj["exception"] = self.formatException(record.exc_info) # Add custom fields from extra if hasattr(record, "extra_fields"): log_obj.update(record.extra_fields) return json.dumps(log_obj) # Usage Example logger = logging.getLogger(__name__) handler = logging.StreamHandler() handler.setFormatter(JSONFormatter()) logger.addHandler(handler) # Log with extra fields logger.info("User logged in", extra={"extra_fields": {"user_id": "123", "ip": "192.168.1.1"}})
다양한 환경에서 로그인
다양한 애플리케이션 환경에는 특정 로깅 접근 방식이 필요합니다. 웹 애플리케이션, 마이크로서비스, 백그라운드 작업 등 어떤 작업을 하든 각 환경에는 고유한 로깅 요구 사항과 모범 사례가 있습니다. 다양한 배포 시나리오에서 효과적인 로깅을 구현하는 방법을 살펴보겠습니다.
웹 애플리케이션 로깅
Django 로깅 구성
다음은 포괄적인 Django 로깅 설정입니다.
import traceback import sys from contextlib import contextmanager class ErrorLogger: def __init__(self, logger): self.logger = logger @contextmanager def error_context(self, operation_name, **context): """Context manager for error logging with additional context""" try: yield except Exception as e: # Capture the current stack trace exc_type, exc_value, exc_traceback = sys.exc_info() # Format error details error_details = { "operation": operation_name, "error_type": exc_type.__name__, "error_message": str(exc_value), "context": context, "stack_trace": traceback.format_exception(exc_type, exc_value, exc_traceback) } # Log the error with full context self.logger.error( f"Error in {operation_name}: {str(exc_value)}", extra={"error_details": error_details} ) # Re-raise the exception raise # Usage Example logger = logging.getLogger(__name__) error_logger = ErrorLogger(logger) with error_logger.error_context("user_authentication", user_id="123", attempt=2): # Your code that might raise an exception authenticate_user(user_id)
플라스크 로깅 설정
Flask는 사용자 정의할 수 있는 자체 로깅 시스템을 제공합니다.
import threading import logging from queue import Queue from logging.handlers import QueueHandler, QueueListener def setup_thread_safe_logging(): """Set up thread-safe logging with a queue""" # Create the queue log_queue = Queue() # Create handlers console_handler = logging.StreamHandler() file_handler = logging.FileHandler('app.log') # Create queue handler and listener queue_handler = QueueHandler(log_queue) listener = QueueListener( log_queue, console_handler, file_handler, respect_handler_level=True ) # Configure root logger root_logger = logging.getLogger() root_logger.addHandler(queue_handler) # Start the listener in a separate thread listener.start() return listener # Usage listener = setup_thread_safe_logging() def worker_function(): logger = logging.getLogger(__name__) logger.info(f"Worker thread {threading.current_thread().name} starting") # Do work... logger.info(f"Worker thread {threading.current_thread().name} finished") # Create and start threads threads = [ threading.Thread(target=worker_function) for _ in range(3) ] for thread in threads: thread.start()
FastAPI 로깅 방식
FastAPI는 일부 미들웨어 개선 사항을 통해 Python의 로깅을 활용할 수 있습니다.
# settings.py LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'verbose': { 'format': '{levelname} {asctime} {module} {process:d} {thread:d} {message}', 'style': '{', }, 'simple': { 'format': '{levelname} {message}', 'style': '{', }, }, 'filters': { 'require_debug_true': { '()': 'django.utils.log.RequireDebugTrue', }, }, 'handlers': { 'console': { 'level': 'INFO', 'filters': ['require_debug_true'], 'class': 'logging.StreamHandler', 'formatter': 'simple' }, 'file': { 'level': 'ERROR', 'class': 'logging.FileHandler', 'filename': 'django-errors.log', 'formatter': 'verbose' }, 'mail_admins': { 'level': 'ERROR', 'class': 'django.utils.log.AdminEmailHandler', 'include_html': True, } }, 'loggers': { 'django': { 'handlers': ['console'], 'propagate': True, }, 'django.request': { 'handlers': ['file', 'mail_admins'], 'level': 'ERROR', 'propagate': False, }, 'myapp': { 'handlers': ['console', 'file'], 'level': 'INFO', } } }
마이크로서비스 로깅
마이크로서비스의 경우 분산 추적 및 상관 관계 ID가 필수적입니다.
import logging from logging.handlers import RotatingFileHandler from flask import Flask, request app = Flask(__name__) def setup_logger(): # Create formatter formatter = logging.Formatter( '[%(asctime)s] %(levelname)s in %(module)s: %(message)s' ) # File Handler file_handler = RotatingFileHandler( 'flask_app.log', maxBytes=10485760, # 10MB backupCount=10 ) file_handler.setLevel(logging.INFO) file_handler.setFormatter(formatter) # Add request context class RequestFormatter(logging.Formatter): def format(self, record): record.url = request.url record.remote_addr = request.remote_addr return super().format(record) # Configure app logger app.logger.addHandler(file_handler) app.logger.setLevel(logging.INFO) return app.logger # Usage in routes @app.route('/api/endpoint') def api_endpoint(): app.logger.info(f'Request received from {request.remote_addr}') # Your code here return jsonify({'status': 'success'})
백그라운드 작업 로깅
백그라운드 작업의 경우 적절한 로그 처리 및 순환을 보장해야 합니다.
from fastapi import FastAPI, Request from typing import Callable import logging import time app = FastAPI() # Configure logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) # Middleware for request logging @app.middleware("http") async def log_requests(request: Request, call_next: Callable): start_time = time.time() response = await call_next(request) duration = time.time() - start_time log_dict = { "url": str(request.url), "method": request.method, "client_ip": request.client.host, "duration": f"{duration:.2f}s", "status_code": response.status_code } logger.info(f"Request processed: {log_dict}") return response # Example endpoint with logging @app.get("/items/{item_id}") async def read_item(item_id: int): logger.info(f"Retrieving item {item_id}") # Your code here return {"item_id": item_id}
일반적인 로깅 패턴 및 솔루션
ID 추적 요청
애플리케이션 전반에 걸쳐 요청 추적 구현:
import logging import contextvars from uuid import uuid4 # Create context variable for trace ID trace_id_var = contextvars.ContextVar('trace_id', default=None) class TraceIDFilter(logging.Filter): def filter(self, record): trace_id = trace_id_var.get() record.trace_id = trace_id if trace_id else 'no_trace' return True def setup_microservice_logging(service_name): logger = logging.getLogger(service_name) # Create formatter with trace ID formatter = logging.Formatter( '%(asctime)s - %(name)s - [%(trace_id)s] - %(levelname)s - %(message)s' ) # Add handlers with trace ID filter handler = logging.StreamHandler() handler.setFormatter(formatter) handler.addFilter(TraceIDFilter()) logger.addHandler(handler) logger.setLevel(logging.INFO) return logger # Usage in microservice logger = setup_microservice_logging('order_service') def process_order(order_data): # Generate or get trace ID from request trace_id_var.set(str(uuid4())) logger.info("Starting order processing", extra={ 'order_id': order_data['id'], 'customer_id': order_data['customer_id'] }) # Process order... logger.info("Order processed successfully")
사용자 활동 로깅
사용자 활동을 안전하게 추적:
# Simple python logging example import logging # Basic logger in python example logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) # Create a logger logger = logging.getLogger(__name__) # Logger in python example logger.info("This is an information message") logger.warning("This is a warning message")
문제 해결 및 디버깅
로깅 문제를 효과적으로 해결하려면 일반적인 문제와 해결 방법을 이해해야 합니다. 이 섹션에서는 로깅을 구현할 때 개발자가 직면하는 가장 빈번한 문제를 다루고 로깅 구성 디버깅을 위한 실용적인 솔루션을 제공합니다.
일반적인 로깅 문제
누락된 로그 항목
import logging # Basic configuration logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) # Your first logger logger = logging.getLogger(__name__) # Using the logger logger.info("Application started") logger.warning("Watch out!") logger.error("Something went wrong")
성능 병목 현상
logging.basicConfig( filename='app.log', filemode='w', format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.DEBUG, datefmt='%Y-%m-%d %H:%M:%S' )
일반적인 로깅 문제 및 솔루션
구성 문제
config = { 'version': 1, 'formatters': { 'detailed': { 'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s' } }, 'handlers': { 'console': { 'class': 'logging.StreamHandler', 'level': 'INFO', 'formatter': 'detailed' }, 'file': { 'class': 'logging.FileHandler', 'filename': 'app.log', 'level': 'DEBUG', 'formatter': 'detailed' } }, 'loggers': { 'myapp': { 'handlers': ['console', 'file'], 'level': 'DEBUG', 'propagate': True } } } logging.config.dictConfig(config)
메모리 및 리소스 문제
import json import logging from datetime import datetime class JSONFormatter(logging.Formatter): def __init__(self): super().__init__() def format(self, record): # Create base log record log_obj = { "timestamp": self.formatTime(record, self.datefmt), "name": record.name, "level": record.levelname, "message": record.getMessage(), "module": record.module, "function": record.funcName, "line": record.lineno } # Add exception info if present if record.exc_info: log_obj["exception"] = self.formatException(record.exc_info) # Add custom fields from extra if hasattr(record, "extra_fields"): log_obj.update(record.extra_fields) return json.dumps(log_obj) # Usage Example logger = logging.getLogger(__name__) handler = logging.StreamHandler() handler.setFormatter(JSONFormatter()) logger.addHandler(handler) # Log with extra fields logger.info("User logged in", extra={"extra_fields": {"user_id": "123", "ip": "192.168.1.1"}})
형식 문자열 및 성능 문제
import traceback import sys from contextlib import contextmanager class ErrorLogger: def __init__(self, logger): self.logger = logger @contextmanager def error_context(self, operation_name, **context): """Context manager for error logging with additional context""" try: yield except Exception as e: # Capture the current stack trace exc_type, exc_value, exc_traceback = sys.exc_info() # Format error details error_details = { "operation": operation_name, "error_type": exc_type.__name__, "error_message": str(exc_value), "context": context, "stack_trace": traceback.format_exception(exc_type, exc_value, exc_traceback) } # Log the error with full context self.logger.error( f"Error in {operation_name}: {str(exc_value)}", extra={"error_details": error_details} ) # Re-raise the exception raise # Usage Example logger = logging.getLogger(__name__) error_logger = ErrorLogger(logger) with error_logger.error_context("user_authentication", user_id="123", attempt=2): # Your code that might raise an exception authenticate_user(user_id)
핸들러 구성 트랩
import threading import logging from queue import Queue from logging.handlers import QueueHandler, QueueListener def setup_thread_safe_logging(): """Set up thread-safe logging with a queue""" # Create the queue log_queue = Queue() # Create handlers console_handler = logging.StreamHandler() file_handler = logging.FileHandler('app.log') # Create queue handler and listener queue_handler = QueueHandler(log_queue) listener = QueueListener( log_queue, console_handler, file_handler, respect_handler_level=True ) # Configure root logger root_logger = logging.getLogger() root_logger.addHandler(queue_handler) # Start the listener in a separate thread listener.start() return listener # Usage listener = setup_thread_safe_logging() def worker_function(): logger = logging.getLogger(__name__) logger.info(f"Worker thread {threading.current_thread().name} starting") # Do work... logger.info(f"Worker thread {threading.current_thread().name} finished") # Create and start threads threads = [ threading.Thread(target=worker_function) for _ in range(3) ] for thread in threads: thread.start()
스레드 안전 고려 사항
# settings.py LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'verbose': { 'format': '{levelname} {asctime} {module} {process:d} {thread:d} {message}', 'style': '{', }, 'simple': { 'format': '{levelname} {message}', 'style': '{', }, }, 'filters': { 'require_debug_true': { '()': 'django.utils.log.RequireDebugTrue', }, }, 'handlers': { 'console': { 'level': 'INFO', 'filters': ['require_debug_true'], 'class': 'logging.StreamHandler', 'formatter': 'simple' }, 'file': { 'level': 'ERROR', 'class': 'logging.FileHandler', 'filename': 'django-errors.log', 'formatter': 'verbose' }, 'mail_admins': { 'level': 'ERROR', 'class': 'django.utils.log.AdminEmailHandler', 'include_html': True, } }, 'loggers': { 'django': { 'handlers': ['console'], 'propagate': True, }, 'django.request': { 'handlers': ['file', 'mail_admins'], 'level': 'ERROR', 'propagate': False, }, 'myapp': { 'handlers': ['console', 'file'], 'level': 'INFO', } } }
구성 파일 문제
import logging from logging.handlers import RotatingFileHandler from flask import Flask, request app = Flask(__name__) def setup_logger(): # Create formatter formatter = logging.Formatter( '[%(asctime)s] %(levelname)s in %(module)s: %(message)s' ) # File Handler file_handler = RotatingFileHandler( 'flask_app.log', maxBytes=10485760, # 10MB backupCount=10 ) file_handler.setLevel(logging.INFO) file_handler.setFormatter(formatter) # Add request context class RequestFormatter(logging.Formatter): def format(self, record): record.url = request.url record.remote_addr = request.remote_addr return super().format(record) # Configure app logger app.logger.addHandler(file_handler) app.logger.setLevel(logging.INFO) return app.logger # Usage in routes @app.route('/api/endpoint') def api_endpoint(): app.logger.info(f'Request received from {request.remote_addr}') # Your code here return jsonify({'status': 'success'})
로깅 테스트
로그를 사용한 단위 테스트
from fastapi import FastAPI, Request from typing import Callable import logging import time app = FastAPI() # Configure logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) # Middleware for request logging @app.middleware("http") async def log_requests(request: Request, call_next: Callable): start_time = time.time() response = await call_next(request) duration = time.time() - start_time log_dict = { "url": str(request.url), "method": request.method, "client_ip": request.client.host, "duration": f"{duration:.2f}s", "status_code": response.status_code } logger.info(f"Request processed: {log_dict}") return response # Example endpoint with logging @app.get("/items/{item_id}") async def read_item(item_id: int): logger.info(f"Retrieving item {item_id}") # Your code here return {"item_id": item_id}
모의 로거를 사용한 테스트
import logging import contextvars from uuid import uuid4 # Create context variable for trace ID trace_id_var = contextvars.ContextVar('trace_id', default=None) class TraceIDFilter(logging.Filter): def filter(self, record): trace_id = trace_id_var.get() record.trace_id = trace_id if trace_id else 'no_trace' return True def setup_microservice_logging(service_name): logger = logging.getLogger(service_name) # Create formatter with trace ID formatter = logging.Formatter( '%(asctime)s - %(name)s - [%(trace_id)s] - %(levelname)s - %(message)s' ) # Add handlers with trace ID filter handler = logging.StreamHandler() handler.setFormatter(formatter) handler.addFilter(TraceIDFilter()) logger.addHandler(handler) logger.setLevel(logging.INFO) return logger # Usage in microservice logger = setup_microservice_logging('order_service') def process_order(order_data): # Generate or get trace ID from request trace_id_var.set(str(uuid4())) logger.info("Starting order processing", extra={ 'order_id': order_data['id'], 'customer_id': order_data['customer_id'] }) # Process order... logger.info("Order processed successfully")
대체 로깅 솔루션
로그루
Loguru는 강력한 기능을 갖춘 간단한 로깅 인터페이스를 제공합니다.
from logging.handlers import RotatingFileHandler import logging import threading from datetime import datetime class BackgroundTaskLogger: def __init__(self, task_name): self.logger = logging.getLogger(f'background_task.{task_name}') self.setup_logging() def setup_logging(self): # Create logs directory if it doesn't exist import os os.makedirs('logs', exist_ok=True) # Setup rotating file handler handler = RotatingFileHandler( filename=f'logs/task_{datetime.now():%Y%m%d}.log', maxBytes=5*1024*1024, # 5MB backupCount=5 ) # Create formatter formatter = logging.Formatter( '%(asctime)s - [%(threadName)s] - %(levelname)s - %(message)s' ) handler.setFormatter(formatter) self.logger.addHandler(handler) self.logger.setLevel(logging.INFO) def log_task_status(self, status, **kwargs): """Log task status with additional context""" extra = { 'thread_id': threading.get_ident(), 'timestamp': datetime.now().isoformat(), **kwargs } self.logger.info(f"Task status: {status}", extra=extra) # Usage example def background_job(): logger = BackgroundTaskLogger('data_processing') try: logger.log_task_status('started', job_id=123) # Do some work... logger.log_task_status('completed', records_processed=1000) except Exception as e: logger.logger.error(f"Task failed: {str(e)}", exc_info=True)
구조체로그
Structlog는 컨텍스트가 있는 구조적 로깅에 탁월합니다.
import logging from contextlib import contextmanager import threading import uuid # Store request ID in thread-local storage _request_id = threading.local() class RequestIDFilter(logging.Filter): def filter(self, record): record.request_id = getattr(_request_id, 'id', 'no_request_id') return True @contextmanager def request_context(request_id=None): """Context manager for request tracking""" if request_id is None: request_id = str(uuid.uuid4()) old_id = getattr(_request_id, 'id', None) _request_id.id = request_id try: yield request_id finally: if old_id is None: del _request_id.id else: _request_id.id = old_id # Setup logging with request ID def setup_request_logging(): logger = logging.getLogger() formatter = logging.Formatter( '%(asctime)s - [%(request_id)s] - %(levelname)s - %(message)s' ) handler = logging.StreamHandler() handler.setFormatter(formatter) handler.addFilter(RequestIDFilter()) logger.addHandler(handler) return logger # Usage example logger = setup_request_logging() def process_request(data): with request_context() as request_id: logger.info("Processing request", extra={ 'data': data, 'operation': 'process_request' }) # Process the request... logger.info("Request processed successfully")
Python-JSON-로거
JSON 형식 로깅의 경우:
# Simple python logging example import logging # Basic logger in python example logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) # Create a logger logger = logging.getLogger(__name__) # Logger in python example logger.info("This is an information message") logger.warning("This is a warning message")
모범 사례 및 지침
로깅 표준
import logging # Basic configuration logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) # Your first logger logger = logging.getLogger(__name__) # Using the logger logger.info("Application started") logger.warning("Watch out!") logger.error("Something went wrong")
성능 최적화
logging.basicConfig( filename='app.log', filemode='w', format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.DEBUG, datefmt='%Y-%m-%d %H:%M:%S' )
사례 연구
실제 구현: 전자상거래 플랫폼
config = { 'version': 1, 'formatters': { 'detailed': { 'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s' } }, 'handlers': { 'console': { 'class': 'logging.StreamHandler', 'level': 'INFO', 'formatter': 'detailed' }, 'file': { 'class': 'logging.FileHandler', 'filename': 'app.log', 'level': 'DEBUG', 'formatter': 'detailed' } }, 'loggers': { 'myapp': { 'handlers': ['console', 'file'], 'level': 'DEBUG', 'propagate': True } } } logging.config.dictConfig(config)
마이크로서비스 아키텍처 예
import json import logging from datetime import datetime class JSONFormatter(logging.Formatter): def __init__(self): super().__init__() def format(self, record): # Create base log record log_obj = { "timestamp": self.formatTime(record, self.datefmt), "name": record.name, "level": record.levelname, "message": record.getMessage(), "module": record.module, "function": record.funcName, "line": record.lineno } # Add exception info if present if record.exc_info: log_obj["exception"] = self.formatException(record.exc_info) # Add custom fields from extra if hasattr(record, "extra_fields"): log_obj.update(record.extra_fields) return json.dumps(log_obj) # Usage Example logger = logging.getLogger(__name__) handler = logging.StreamHandler() handler.setFormatter(JSONFormatter()) logger.addHandler(handler) # Log with extra fields logger.info("User logged in", extra={"extra_fields": {"user_id": "123", "ip": "192.168.1.1"}})
결론
주요 시사점
- 기초가 먼저: 적절한 기본 구성부터 시작하세요
- 적절한 로그 수준 설정
- 의미 있는 형식 구성
- 적절한 핸들러 선택
- 구조적 접근 방식: 더 나은 분석을 위해 구조적 로깅 사용
- 일관적인 로그 형식
- 상황별 정보
- 기계로 분석 가능한 출력
- 성능 문제: 프로덕션을 위한 로깅 최적화
- 로그 순환 구현
- 필요할 때 비동기 로깅 사용
- 샘플링 전략 고려
-
보안 인식: 민감한 정보 보호
- 민감한 데이터 필터링
- 적절한 액세스 제어 구현
- 규정 준수 요구 사항을 따르세요
구현 체크리스트
import traceback import sys from contextlib import contextmanager class ErrorLogger: def __init__(self, logger): self.logger = logger @contextmanager def error_context(self, operation_name, **context): """Context manager for error logging with additional context""" try: yield except Exception as e: # Capture the current stack trace exc_type, exc_value, exc_traceback = sys.exc_info() # Format error details error_details = { "operation": operation_name, "error_type": exc_type.__name__, "error_message": str(exc_value), "context": context, "stack_trace": traceback.format_exception(exc_type, exc_value, exc_traceback) } # Log the error with full context self.logger.error( f"Error in {operation_name}: {str(exc_value)}", extra={"error_details": error_details} ) # Re-raise the exception raise # Usage Example logger = logging.getLogger(__name__) error_logger = ErrorLogger(logger) with error_logger.error_context("user_authentication", user_id="123", attempt=2): # Your code that might raise an exception authenticate_user(user_id)
추가 리소스
- 공식 문서:
- Python 로깅 HOWTO
- 로깅 요리책
- 도구 및 라이브러리:
- 로그루 문서
- Structlog 문서
- Python-JSON-로거
이 가이드에서는 기본 설정부터 고급 구현까지 Python 로깅의 필수 측면을 다룹니다. 로깅은 애플리케이션 관찰 및 유지 관리에 필수적인 부분이라는 점을 기억하세요. 최상의 결과를 얻으려면 신중하게 구현하고 정기적으로 유지관리하세요.
애플리케이션이 발전하고 새로운 요구 사항이 등장함에 따라 로깅 구현을 정기적으로 검토하고 업데이트하는 것을 잊지 마세요.
위 내용은 완전한 Python 로깅 가이드: 모범 사례 및 구현의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python 또는 C를 선택하는 것은 프로젝트 요구 사항에 따라 다릅니다. 1) 빠른 개발, 데이터 처리 및 프로토 타입 설계가 필요한 경우 Python을 선택하십시오. 2) 고성능, 낮은 대기 시간 및 근접 하드웨어 제어가 필요한 경우 C를 선택하십시오.

매일 2 시간의 파이썬 학습을 투자하면 프로그래밍 기술을 효과적으로 향상시킬 수 있습니다. 1. 새로운 지식 배우기 : 문서를 읽거나 자습서를 시청하십시오. 2. 연습 : 코드를 작성하고 완전한 연습을합니다. 3. 검토 : 배운 내용을 통합하십시오. 4. 프로젝트 실무 : 실제 프로젝트에서 배운 것을 적용하십시오. 이러한 구조화 된 학습 계획은 파이썬을 체계적으로 마스터하고 경력 목표를 달성하는 데 도움이 될 수 있습니다.

2 시간 이내에 Python을 효율적으로 학습하는 방법 : 1. 기본 지식을 검토하고 Python 설치 및 기본 구문에 익숙한 지 확인하십시오. 2. 변수, 목록, 기능 등과 같은 파이썬의 핵심 개념을 이해합니다. 3. 예제를 사용하여 마스터 기본 및 고급 사용; 4. 일반적인 오류 및 디버깅 기술을 배우십시오. 5. 목록 이해력 사용 및 PEP8 스타일 안내서와 같은 성능 최적화 및 모범 사례를 적용합니다.

Python은 초보자 및 데이터 과학에 적합하며 C는 시스템 프로그래밍 및 게임 개발에 적합합니다. 1. 파이썬은 간단하고 사용하기 쉽고 데이터 과학 및 웹 개발에 적합합니다. 2.C는 게임 개발 및 시스템 프로그래밍에 적합한 고성능 및 제어를 제공합니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Python은 데이터 과학 및 빠른 개발에 더 적합한 반면 C는 고성능 및 시스템 프로그래밍에 더 적합합니다. 1. Python Syntax는 간결하고 학습하기 쉽고 데이터 처리 및 과학 컴퓨팅에 적합합니다. 2.C는 복잡한 구문을 가지고 있지만 성능이 뛰어나고 게임 개발 및 시스템 프로그래밍에 종종 사용됩니다.

파이썬을 배우기 위해 하루에 2 시간을 투자하는 것이 가능합니다. 1. 새로운 지식 배우기 : 목록 및 사전과 같은 1 시간 안에 새로운 개념을 배우십시오. 2. 연습 및 연습 : 1 시간을 사용하여 소규모 프로그램 작성과 같은 프로그래밍 연습을 수행하십시오. 합리적인 계획과 인내를 통해 짧은 시간에 Python의 핵심 개념을 마스터 할 수 있습니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

Dreamweaver Mac版
시각적 웹 개발 도구

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음
