PyTorch의 MNIST

Susan Sarandon
Susan Sarandon원래의
2024-12-23 05:04:31544검색

커피 한잔 사주세요😄

*내 게시물은 MNIST를 설명합니다.

MNIST()는 아래와 같이 MNIST 데이터세트를 사용할 수 있습니다.

*메모:

  • 첫 번째 인수는 루트(필수 유형:str 또는 pathlib.Path)입니다. *절대경로, 상대경로 모두 가능합니다.
  • 두 번째 인수는 train(Optional-Default:False-Type:float)입니다. *True일 경우 학습 데이터(60,000개 샘플)를 사용하고, False일 경우 테스트 데이터(60,000개 샘플)를 사용합니다.
  • 세 번째 인수는 변환(Optional-Default:None-Type:callable)입니다.
  • 네 번째 인수는 target_transform(Optional-Default:None-Type:callable)입니다.
  • 다섯 번째 인수는 download(Optional-Default:False-Type:bool)입니다. *메모:
    • True인 경우 데이터 세트가 인터넷에서 다운로드되어 루트에 추출(압축 해제)됩니다.
    • True이고 데이터세트가 이미 다운로드된 경우 추출됩니다.
    • True이고 데이터 세트가 이미 다운로드되어 추출된 경우 아무 일도 일어나지 않습니다.
    • 데이터 세트가 이미 다운로드되어 추출된 경우 더 빠르므로 False여야 합니다.
    • 여기에서 데이터 세트를 수동으로 다운로드하고 추출할 수 있습니다. 데이터/MNIST/raw/.
from torchvision.datasets import MNIST

train_data = MNIST(
    root="data"
)

train_data = MNIST(
    root="data",
    train=True,
    transform=None,
    target_transform=None,
    download=False
)

train_data
# Dataset MNIST
#     Number of datapoints: 60000
#     Root location: data
#     Split: Train

train_data.root
# 'data'

train_data.train
# True

print(train_data.transform)
# None

print(train_data.target_transform)
# None

train_data.download
# <bound method MNIST.download of Dataset MNIST
#     Number of datapoints: 60000
#     Root location: data
#     Split: Train>

train_data[0]
# (<PIL.Image.Image image mode=L size=28x28>, 5)

train_data[1]
# (<PIL.Image.Image image mode=L size=28x28>, 0)

train_data[2]
# (<PIL.Image.Image image mode=L size=28x28>, 4)

train_data[3]
# (<PIL.Image.Image image mode=L size=28x28>, 1)

train_data.classes
# ['0 - zero',
#  '1 - one',
#  '2 - two',
#  '3 - three',
#  '4 - four',
#  '5 - five',
#  '6 - six',
#  '7 - seven',
#  '8 - eight',
#  '9 - nine']
from torchvision.datasets import MNIST

train_data = MNIST(
    root="data"
)

test_data = MNIST(
    root="data",
    train=False
)

import matplotlib.pyplot as plt

def show_images(data):
    plt.figure(figsize=(10, 2))
    col = 4
    for i, (image, label) in enumerate(data, 1):
        plt.subplot(1, col, i)
        plt.title(label)
        plt.imshow(image)
        if i == col:
            break
    plt.show()

show_images(data=train_data)
show_images(data=test_data)

MNIST in PyTorch

위 내용은 PyTorch의 MNIST의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명:
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.