찾다
백엔드 개발파이썬 튜토리얼Django 병목 현상 발견: Django-Silk를 사용한 심층 분석

Débusquer les Goulots d

성능이 중요한 이유(그리고 Django-Silk가 최고의 동맹자가 되는 방법)

Django 생태계에서 성능은 사치가 아니라 절대적인 필수 요소입니다. 최신 웹 애플리케이션은 초당 수백 또는 수천 개의 요청으로 실행되며 매 밀리초가 중요합니다.

미묘한 프로파일링의 기술

Django-Silk는 단순한 프로파일링 도구가 아니라 애플리케이션 아키텍처를 위한 현미경입니다. 이를 통해 각 HTTP 요청, 각 데이터베이스 요청을 정밀하게 분석할 수 있습니다.

구체적인 사용 사례

1. 느린 쿼리 식별

# Avant l'optimisation
def liste_utilisateurs_complexe(request):
    # Requête potentiellement non optimisée
    utilisateurs = Utilisateur.objects.select_related('profile') \
                   .prefetch_related('commandes') \
                   .filter(actif=True)[:1000]

Django-Silk를 사용하면 다음을 즉시 시각화할 수 있습니다.

  • 실행시간
  • 생성된 SQL 쿼리 수
  • 메모리 부하

2. N 1 쿼리 문제 - 개발자의 악몽

# Scénario classique de problème N+1
for utilisateur in Utilisateur.objects.all():
    # Chaque itération génère une requête
    print(utilisateur.commandes.count())

Django-Silk는 이러한 유형의 비효율적인 패턴을 강조하여 신속하게 리팩토링할 수 있도록 해줍니다.

3. 미들웨어 분석 및 처리 시간

MIDDLEWARE = [
    'silk.middleware.SilkMiddleware',  # Ajout stratégique
    'django.middleware.security.SecurityMiddleware',
    # Autres middlewares...
]

빠른 설치

pip install django-silk

최소 구성:

INSTALLED_APPS = [
    # Autres apps
    'silk',
]

MIDDLEWARE = [
    'silk.middleware.SilkMiddleware',
    # Autres middlewares
]

킬러 기능?

  1. 자세한 프로파일링

    • 쿼리당 실행 시간
    • SQL 쿼리 분석
    • 종속성 시각화
  2. 직관적인 인터페이스

    • 웹 대시보드
    • 프로필 내보내기
    • 고급 필터
  3. 최소 과부하

    • 미미한 성능 오버헤드
    • 상황에 따른 활성화/비활성화

모범 사례

  • 개발 환경에서만 Silk를 사용하세요
  • 경고 임계값 구성
  • 정기적으로 프로필을 분석하세요

최적화의 구체적인 예

# Avant
def lourde_requete(request):
    resultats = VeryComplexModel.objects.filter(
        condition_complexe=True
    ).select_related('relation1').prefetch_related('relation2')

# Après optimisation (guidé par Silk)
def requete_optimisee(request):
    resultats = (
        VeryComplexModel.objects
        .filter(condition_complexe=True)
        .select_related('relation1')
        .prefetch_related('relation2')
        .only('champs_essentiels')  # Projection
    )

언제 사용하나요?

  • 새로운 기능 개발
  • 프로덕션 배포 전
  • 새로운 복합 모델을 추가할 때

알아야 할 제한 사항

  • 성능에 약간의 영향
  • 개발에만 사용
  • 디스크 공간 소비

결론

Django-Silk는 단순한 도구가 아닌 성능 중심의 개발 철학입니다. 프로파일링이 지루한 작업에서 아키텍처에 대한 매혹적인 탐구로 바뀌었습니다.


프로 팁?: 체계적인 성능 감사를 위해 Django-Silk를 CI/CD 파이프라인에 통합하세요.

위 내용은 Django 병목 현상 발견: Django-Silk를 사용한 심층 분석의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Linux 터미널에서 Python 버전을 볼 때 발생하는 권한 문제를 해결하는 방법은 무엇입니까?Linux 터미널에서 Python 버전을 볼 때 발생하는 권한 문제를 해결하는 방법은 무엇입니까?Apr 01, 2025 pm 05:09 PM

Linux 터미널에서 Python 버전을 보려고 할 때 Linux 터미널에서 Python 버전을 볼 때 권한 문제에 대한 솔루션 ... Python을 입력하십시오 ...

HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까?HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까?Mar 10, 2025 pm 06:54 PM

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까?Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까?Mar 10, 2025 pm 06:52 PM

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

파이썬의 수학 모듈 : 통계파이썬의 수학 모듈 : 통계Mar 09, 2025 am 11:40 AM

Python의 통계 모듈은 강력한 데이터 통계 분석 기능을 제공하여 생물 통계 및 비즈니스 분석과 같은 데이터의 전반적인 특성을 빠르게 이해할 수 있도록 도와줍니다. 데이터 포인트를 하나씩 보는 대신 평균 또는 분산과 같은 통계를보고 무시할 수있는 원래 데이터에서 트렌드와 기능을 발견하고 대형 데이터 세트를보다 쉽고 효과적으로 비교하십시오. 이 튜토리얼은 평균을 계산하고 데이터 세트의 분산 정도를 측정하는 방법을 설명합니다. 달리 명시되지 않는 한,이 모듈의 모든 함수는 단순히 평균을 합산하는 대신 평균 () 함수의 계산을 지원합니다. 부동 소수점 번호도 사용할 수 있습니다. 무작위로 가져옵니다 수입 통계 Fracti에서

인기있는 파이썬 라이브러리와 그 용도는 무엇입니까?인기있는 파이썬 라이브러리와 그 용도는 무엇입니까?Mar 21, 2025 pm 06:46 PM

이 기사는 Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask 및 요청과 같은 인기있는 Python 라이브러리에 대해 설명하고 과학 컴퓨팅, 데이터 분석, 시각화, 기계 학습, 웹 개발 및 H에서의 사용에 대해 자세히 설명합니다.

Python으로 명령 줄 인터페이스 (CLI)를 만드는 방법은 무엇입니까?Python으로 명령 줄 인터페이스 (CLI)를 만드는 방법은 무엇입니까?Mar 10, 2025 pm 06:48 PM

이 기사는 Python 개발자가 CLIS (Command-Line Interfaces) 구축을 안내합니다. Typer, Click 및 Argparse와 같은 라이브러리를 사용하여 입력/출력 처리를 강조하고 CLI 유용성을 향상시키기 위해 사용자 친화적 인 디자인 패턴을 홍보하는 세부 정보.

한 데이터 프레임의 전체 열을 Python의 다른 구조를 가진 다른 데이터 프레임에 효율적으로 복사하는 방법은 무엇입니까?한 데이터 프레임의 전체 열을 Python의 다른 구조를 가진 다른 데이터 프레임에 효율적으로 복사하는 방법은 무엇입니까?Apr 01, 2025 pm 11:15 PM

Python의 Pandas 라이브러리를 사용할 때는 구조가 다른 두 데이터 프레임 사이에서 전체 열을 복사하는 방법이 일반적인 문제입니다. 두 개의 dats가 있다고 가정 해

파이썬에서 가상 환경의 목적을 설명하십시오.파이썬에서 가상 환경의 목적을 설명하십시오.Mar 19, 2025 pm 02:27 PM

이 기사는 프로젝트 종속성 관리 및 충돌을 피하는 데 중점을 둔 Python에서 가상 환경의 역할에 대해 설명합니다. 프로젝트 관리 개선 및 종속성 문제를 줄이는 데있어 생성, 활성화 및 이점을 자세히 설명합니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

VSCode Windows 64비트 다운로드

VSCode Windows 64비트 다운로드

Microsoft에서 출시한 강력한 무료 IDE 편집기