소개
큰 십진수를 곱하는 것은 계산상 어려울 수 있으며, 특히 자릿수가 많거나 소수 자릿수가 여러 개인 숫자를 처리할 때 더욱 그렇습니다. 전통적인 곱셈 방법은 매우 큰 수에는 비효율적입니다. FFT(고속 푸리에 변환)가 구출되어 놀라운 속도로 많은 수를 곱할 수 있는 강력하고 효율적인 알고리즘을 제공합니다.
곱셈의 응용
- FFT는 숫자를 주파수 영역으로 변환하고 점별 곱셈을 수행한 다음 역 FFT를 적용하여 다항식 또는 큰 정수의 빠른 곱셈을 가능하게 합니다.
큰 수 곱셈의 과제
기존의 곱셈 방법은 O(n²)의 시간 복잡도를 갖습니다. 여기서 n은 자릿수입니다. 매우 큰 숫자의 경우 계산 비용이 많이 듭니다. FFT 기반 곱셈 알고리즘은 이러한 복잡성을 O(n log n)로 줄여 큰 숫자의 경우 훨씬 더 빠르게 만듭니다.
Cooley-Tukey FFT에 대한 증명 개요
-
이산 푸리에 변환(DFT) 분해:
- DFT는 다음과 같이 정의됩니다.
Xk = n=0∑N−1 xn⋅ e−2πi⋅kn /N,어디 없음 입력 신호의 크기입니다.
- Cooley-Tukey FFT는 계산을 더 작은 DFT 크기로 나눕니다.
N/2
짝수 색인 용어와 홀수 색인 용어를 분리하여:
Xk = n=0∑N/2−1 x2n ⋅에 −2πi⋅(2n)k/N n=0∑N/ 2−1x2n 1⋅ e−2πi⋅(2n 1)k/N.
- 다음과 같이 줄어듭니다.
Xk =짝수 항의 DFT Wk⋅홀수항의 DFT,어디 와k =e−2πi ⋅k/N .
- DFT는 다음과 같이 정의됩니다.
-
재귀 구조:
- 각 DFT 크기 없음 두 개의 DFT 크기로 분할됩니다. N/2 , 재귀적 구조로 이어집니다.
- 이 재귀적 분할은 크기의 기본 사례까지 계속됩니다. N=1 , 이 시점에서 DFT는 단순히 입력 값입니다.
-
나비 작전:
- 알고리즘은 나비 연산을 사용하여 더 작은 DFT의 결과를 병합합니다.
아′=u Wk⋅v,b′ =u−Wㅋ⋅v,어디 유 그리고 v 더 작은 DFT의 결과이고 Wk 화합의 뿌리를 상징합니다.
- 알고리즘은 나비 연산을 사용하여 더 작은 DFT의 결과를 병합합니다.
-
비트 반전 순열:
- 입력 배열은 내부 계산이 가능하도록 인덱스의 이진 표현을 기반으로 재정렬됩니다.
-
시간 복잡성:
- 각 재귀 수준에는 다음이 있습니다. 없음 단위근을 포함하는 계산과 재귀의 깊이는 다음과 같습니다. 로g2 (N) .
- 이로 인해 다음과 같은 시간 복잡도가 발생합니다. O(NlogN) .
역 FFT
- 역 FFT는 유사하지만 다음을 사용합니다. 에 2πi⋅kn/N 기준으로 삼고 결과를 다음과 같이 확장합니다. 1/N .
FFT 곱셈 알고리즘 이해
FFT 곱셈 알고리즘은 여러 주요 단계를 통해 작동합니다.
-
숫자 전처리
- 입력 숫자를 숫자 배열로 변환
- 정수 부분과 소수 부분 모두 처리
- FFT 계산을 위해 가장 가까운 2의 거듭제곱으로 배열을 채웁니다
-
고속 푸리에 변환
- FFT를 사용하여 숫자 배열을 주파수 영역으로 변환
- 이것은 곱셈 문제를 주파수 영역에서 더 간단한 점별 곱셈으로 변환합니다
-
주파수 영역 곱셈
- 변환된 배열의 요소별 곱셈 수행
- 효율적인 계산을 위해 복소수 연산 활용
-
역 FFT 및 결과 처리
- 곱해진 배열을 다시 시간 영역으로 변환
- 숫자 캐리 처리
- 마지막 십진수 재구성
구현의 주요 구성요소
복소수 표현
class Complex { constructor(re = 0, im = 0) { this.re = re; // Real part this.im = im; // Imaginary part } // Static methods for complex number operations static add(a, b) { /* ... */ } static subtract(a, b) { /* ... */ } static multiply(a, b) { /* ... */ } }
Complex 클래스는 FFT 연산을 수행하는 데 매우 중요하며 실수 영역과 허수 영역 모두에서 숫자를 조작할 수 있게 해줍니다.
고속 푸리에 변환 기능
function fft(a, invert = false) { // Bit reversal preprocessing // Butterfly operations in frequency domain // Optional inverse transformation }
FFT 기능은 시간 영역과 주파수 영역 사이의 숫자를 효율적으로 변환하는 알고리즘의 핵심입니다.
소수 처리
구현에는 십진수 처리를 위한 정교한 논리가 포함됩니다.
- 정수와 소수 부분 분리
- 총 소수점 이하 자릿수 추적
- 올바른 소수점 배치로 결과 재구성
사용 사례 예시
// Multiplying large integers fftMultiply("12345678901234567890", "98765432109876543210") // Multiplying very large different size integers fftMultiply("12345678901234567890786238746872364872364987293795843790587345", "9876543210987654321087634875782369487239874023894") // Multiplying decimal numbers fftMultiply("123.456", "987.654") // Handling different decimal places fftMultiply("1.23", "45.6789") // Handling different decimal places with large numbers fftMultiply("1234567890123456789078623874687236487236498.7293795843790587345", "98765432109876543210876348757823694.87239874023894")
성능상의 이점
- 시간 복잡도: 기존 방법의 O(n²) 대비 O(n log n)
- 정밀도: 소수점 이하 자릿수가 여러 개인 매우 큰 숫자를 처리합니다
- 효율성: 큰 수의 곱셈에서 훨씬 더 빠릅니다
제한 사항 및 고려 사항
- 복소수 표현을 위해 추가 메모리 필요
- 정밀도는 부동 소수점 연산의 영향을 받을 수 있습니다
- 기존 곱셈에 비해 더 복잡한 구현
결론
FFT 곱셈 알고리즘은 큰 수를 효율적으로 곱하는 강력한 접근 방식을 나타냅니다. 주파수 영역 변환을 활용하면 놀라운 속도와 정밀도로 복잡한 수학 연산을 수행할 수 있습니다.
실제 응용
- 과학컴퓨팅
- 재무계산
- 암호화
- 대규모 수치 시뮬레이션
추가 자료
- Cooley-Tukey FFT 알고리즘
- 수론
- 계산수학
암호
완전한 구현은 고속 푸리에 변환 접근 방식을 사용하여 큰 십진수를 곱하기 위한 강력한 솔루션을 제공하는 것입니다.
/** * Fast Fourier Transform (FFT) implementation for decimal multiplication * @param {number[]} a - Input array of real numbers * @param {boolean} invert - Whether to perform inverse FFT * @returns {Complex[]} - Transformed array of complex numbers */ class Complex { constructor(re = 0, im = 0) { this.re = re; this.im = im; } static add(a, b) { return new Complex(a.re + b.re, a.im + b.im); } static subtract(a, b) { return new Complex(a.re - b.re, a.im - b.im); } static multiply(a, b) { return new Complex(a.re * b.re - a.im * b.im, a.re * b.im + a.im * b.re); } } function fft(a, invert = false) { let n = 1; while (n > 1; for (; j & bit; bit >>= 1) { j ^= bit; } j ^= bit; if (i > 1; for (let i = 0; i { const [intPart, decPart] = numStr.split("."); return { intPart: intPart || "0", decPart: decPart || "", totalDecimalPlaces: (decPart || "").length, }; }; const parsed1 = parseNumber(num1); const parsed2 = parseNumber(num2); // Combine numbers removing decimal point const combinedNum1 = parsed1.intPart + parsed1.decPart; const combinedNum2 = parsed2.intPart + parsed2.decPart; // Total decimal places const totalDecimalPlaces = parsed1.totalDecimalPlaces + parsed2.totalDecimalPlaces; // Convert to digit arrays (least significant first) const a = combinedNum1.split("").map(Number).reverse(); const b = combinedNum2.split("").map(Number).reverse(); // Determine result size and pad const resultSize = a.length + b.length; const fftSize = 1 new Complex(x, 0)); const complexB = b.map((x) => new Complex(x, 0)); // Perform FFT const fftA = fft(complexA); const fftB = fft(complexB); // Pointwise multiplication in frequency domain const fftProduct = new Array(fftSize); for (let i = 0; i = 10) { result[i + 1] += Math.floor(result[i] / 10); result[i] %= 10; } } // Remove leading zeros and convert to string while (result.length > 1 && result[result.length - 1] === 0) { result.pop(); } // Insert decimal point const resultStr = result.reverse().join(""); if (totalDecimalPlaces === 0) { return resultStr; } // Handle case where result might be shorter than decimal places if (resultStr.length <h3> 산출 </h3> <pre class="brush:php;toolbar:false">// Example Usage - Self verify using Python console.log( "Product of integers:", fftMultiply("12345678901234567890", "98765432109876543210") ); console.log("Product of decimals:", fftMultiply("123.456", "987.654")); console.log("Product of mixed decimals:", fftMultiply("12.34", "56.78")); console.log( "Product with different decimal places:", fftMultiply("1.23", "45.6789") ); console.log( "Product with large integers:", fftMultiply( "12345678901234567890786238746872364872364987293795843790587345", "9876543210987654321087634875782369487239874023894" ) ); const num1 = "1234567890123456789078623874687236487236498.7293795843790587345"; const num2 = "98765432109876543210876348757823694.87239874023894"; console.log("Product:", fftMultiply(num1, num2));
Product of integers: 1219326311370217952237463801111263526900 Product of decimals: 121931.812224 Product of mixed decimals: 700.6652 Product with different decimal places: 56.185047 Product with large integers: 121932631137021795232593613105722759976860134207381319681901040774443113318245930967231822167723255326824021430 Product: 121932631137021795232593613105722759976860134207381319681901040774443113318245.93096723182216772325532682402143
위 내용은 FFT(고속 푸리에 변환)를 사용하여 큰 십진수 곱하기의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

JavaScript 코어 데이터 유형은 브라우저 및 Node.js에서 일관되지만 추가 유형과 다르게 처리됩니다. 1) 글로벌 객체는 브라우저의 창이고 node.js의 글로벌입니다. 2) 이진 데이터를 처리하는 데 사용되는 Node.js의 고유 버퍼 객체. 3) 성능 및 시간 처리에는 차이가 있으며 환경에 따라 코드를 조정해야합니다.

javaScriptUSTWOTYPESOFSOFCOMMENTS : 단일 라인 (//) 및 multi-line (//)

Python과 JavaScript의 주요 차이점은 유형 시스템 및 응용 프로그램 시나리오입니다. 1. Python은 과학 컴퓨팅 및 데이터 분석에 적합한 동적 유형을 사용합니다. 2. JavaScript는 약한 유형을 채택하며 프론트 엔드 및 풀 스택 개발에 널리 사용됩니다. 두 사람은 비동기 프로그래밍 및 성능 최적화에서 고유 한 장점을 가지고 있으며 선택할 때 프로젝트 요구 사항에 따라 결정해야합니다.

Python 또는 JavaScript를 선택할지 여부는 프로젝트 유형에 따라 다릅니다. 1) 데이터 과학 및 자동화 작업을 위해 Python을 선택하십시오. 2) 프론트 엔드 및 풀 스택 개발을 위해 JavaScript를 선택하십시오. Python은 데이터 처리 및 자동화 분야에서 강력한 라이브러리에 선호되는 반면 JavaScript는 웹 상호 작용 및 전체 스택 개발의 장점에 없어서는 안될 필수입니다.

파이썬과 자바 스크립트는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구와 개인 선호도에 따라 다릅니다. 1. Python은 간결한 구문으로 데이터 과학 및 백엔드 개발에 적합하지만 실행 속도가 느립니다. 2. JavaScript는 프론트 엔드 개발의 모든 곳에 있으며 강력한 비동기 프로그래밍 기능을 가지고 있습니다. node.js는 풀 스택 개발에 적합하지만 구문은 복잡하고 오류가 발생할 수 있습니다.

javaScriptisNotBuiltoncorc; it'SangretedLanguageThatrunsonOngineStenWrittenInc .1) javaScriptWasDesignEdasAlightweight, 해석 hanguageforwebbrowsers.2) Endinesevolvedfromsimpleplemporectreterstoccilpilers, 전기적으로 개선된다.

JavaScript는 프론트 엔드 및 백엔드 개발에 사용할 수 있습니다. 프론트 엔드는 DOM 작업을 통해 사용자 경험을 향상시키고 백엔드는 Node.js를 통해 서버 작업을 처리합니다. 1. 프론트 엔드 예 : 웹 페이지 텍스트의 내용을 변경하십시오. 2. 백엔드 예제 : node.js 서버를 만듭니다.

Python 또는 JavaScript는 경력 개발, 학습 곡선 및 생태계를 기반으로해야합니다. 1) 경력 개발 : Python은 데이터 과학 및 백엔드 개발에 적합한 반면 JavaScript는 프론트 엔드 및 풀 스택 개발에 적합합니다. 2) 학습 곡선 : Python 구문은 간결하며 초보자에게 적합합니다. JavaScript Syntax는 유연합니다. 3) 생태계 : Python에는 풍부한 과학 컴퓨팅 라이브러리가 있으며 JavaScript는 강력한 프론트 엔드 프레임 워크를 가지고 있습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

Dreamweaver Mac版
시각적 웹 개발 도구

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음