맵과 목록 이해: 성능과 Python성
반복 가능한 데이터를 처리할 때 Python 프로그래머는 종종 map() 사용 중 하나를 선택해야 하는 상황에 직면합니다. 그리고 이해를 나열합니다. 두 방법 모두 데이터 변환을 위한 우아한 구문을 제공하지만 효율성과 Python 스타일의 미묘한 차이를 이해하는 것이 좋습니다.
변환 함수가 이미 정의되어 map()과 목록 이해 간에 공유되는 경우 map ()는 약간의 속도 이점을 나타낼 수 있습니다. 그러나 map() 함수에 람다 표현식이 필요한 경우 이러한 이점은 무시할 수 있습니다.
다음 예를 고려하십시오.
xs = range(10)
map() 및 목록 이해의 변환에 동일한 함수를 사용합니다. :
map(hex, xs) [hex(x) for x in xs]
벤치마크를 실행하면 map()이 이 부분에서 약간 더 빠르다는 것을 알 수 있습니다. 시나리오:
$ python -m timeit -s'xs=range(10)' 'map(hex, xs)' 100000 loops, best of 3: 4.86 usec per loop $ python -m timeit -s'xs=range(10)' '[hex(x) for x in xs]' 100000 loops, best of 3: 5.58 usec per loop
그러나 map() 함수에 람다가 필요한 경우 성능 비교가 크게 반전됩니다.
map(lambda x: x+2, xs) [x+2 for x in xs]
벤치마크 결과는 이 경우 목록 이해에 대한 분명한 이점을 보여줍니다. :
$ python -m timeit -s'xs=range(10)' 'map(lambda x: x+2, xs)' 100000 loops, best of 3: 4.24 usec per loop $ python -m timeit -s'xs=range(10)' '[x+2 for x in xs]' 100000 loops, best of 3: 2.32 usec per loop
성능 외에도 Python 개발자는 목록 이해를 더 Python적인 것으로 간주하는 경우가 많습니다. 직접적이고 간결한 구문은 map() 및 람다를 사용하는 것보다 더 관용적인 것으로 간주됩니다.
결국 map()과 목록 이해 중 선택은 특정 사용 사례와 효율성과 Pythonicity에 대한 프로그래머의 선호도에 따라 달라집니다. . 그러나 성능의 미묘한 차이를 이해하면 최적의 코드 최적화를 위한 현명한 결정을 내릴 수 있습니다.
위 내용은 Python의 맵 및 목록 이해: 언제 더 빠르고 더 Python적인가?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Linux 터미널에서 Python 버전을 보려고 할 때 Linux 터미널에서 Python 버전을 볼 때 권한 문제에 대한 솔루션 ... Python을 입력하십시오 ...

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

파이썬 객체의 직렬화 및 사막화는 사소한 프로그램의 주요 측면입니다. 무언가를 Python 파일에 저장하면 구성 파일을 읽거나 HTTP 요청에 응답하는 경우 객체 직렬화 및 사태화를 수행합니다. 어떤 의미에서, 직렬화와 사제화는 세계에서 가장 지루한 것들입니다. 이 모든 형식과 프로토콜에 대해 누가 걱정합니까? 일부 파이썬 객체를 지속하거나 스트리밍하여 나중에 완전히 검색하려고합니다. 이것은 세상을 개념적 차원에서 볼 수있는 좋은 방법입니다. 그러나 실제 수준에서 선택한 직렬화 체계, 형식 또는 프로토콜은 속도, 보안, 유지 보수 상태 및 프로그램의 기타 측면을 결정할 수 있습니다.

Python의 통계 모듈은 강력한 데이터 통계 분석 기능을 제공하여 생물 통계 및 비즈니스 분석과 같은 데이터의 전반적인 특성을 빠르게 이해할 수 있도록 도와줍니다. 데이터 포인트를 하나씩 보는 대신 평균 또는 분산과 같은 통계를보고 무시할 수있는 원래 데이터에서 트렌드와 기능을 발견하고 대형 데이터 세트를보다 쉽고 효과적으로 비교하십시오. 이 튜토리얼은 평균을 계산하고 데이터 세트의 분산 정도를 측정하는 방법을 설명합니다. 달리 명시되지 않는 한,이 모듈의 모든 함수는 단순히 평균을 합산하는 대신 평균 () 함수의 계산을 지원합니다. 부동 소수점 번호도 사용할 수 있습니다. 무작위로 가져옵니다 수입 통계 Fracti에서

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

이 튜토리얼은 간단한 나무 탐색을 넘어서 DOM 조작에 중점을 둔 아름다운 수프에 대한 이전 소개를 바탕으로합니다. HTML 구조를 수정하기위한 효율적인 검색 방법과 기술을 탐색하겠습니다. 일반적인 DOM 검색 방법 중 하나는 EX입니다

이 기사는 Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask 및 요청과 같은 인기있는 Python 라이브러리에 대해 설명하고 과학 컴퓨팅, 데이터 분석, 시각화, 기계 학습, 웹 개발 및 H에서의 사용에 대해 자세히 설명합니다.

이 기사는 Python 개발자가 CLIS (Command-Line Interfaces) 구축을 안내합니다. Typer, Click 및 Argparse와 같은 라이브러리를 사용하여 입력/출력 처리를 강조하고 CLI 유용성을 향상시키기 위해 사용자 친화적 인 디자인 패턴을 홍보하는 세부 정보.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기
