Django 사용자 모델 확장: 최적의 접근 방식
내장된 Django 사용자 모델을 사용자 정의 필드로 확장할 때 두 가지 주요 접근 방식이 눈에 띕니다. :
1. OneToOneField(User) 속성 사용
이것은 권장되는 Django 접근 방식이며 User 모델과 일대일 관계로 새 모델을 생성하는 작업이 포함됩니다. 이 "프로필" 모델은 사용자에 대한 추가 정보를 저장할 수 있습니다.
from django.db import models from django.contrib.auth.models import User class UserProfile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) # Custom fields here, e.g.: address = models.CharField(max_length=255) phone_number = models.CharField(max_length=15) # ...
2. 사용자 정의 사용자 모델로 대체
이 접근 방식에는 Django 사용자 모델을 원하는 수정 사항이 포함된 사용자 정의 모델로 완전히 바꾸는 것이 포함됩니다. 그러나 이는 극단적인 것으로 간주되며 다음과 같은 경고가 따릅니다.
- 사용자 모델에 의존하는 다른 Django 기능을 손상시킬 수 있습니다.
- Django 인증 모듈을 복사하고 변경하는 작업이 포함됩니다.
- 인증 재구현이 필요할 수 있습니다.
이메일을 사용자 이름으로 사용
이메일을 사용자 이름으로 사용하려면 다음 중 하나를 수행합니다.
- get_username을 재정의합니다. () 사용자 정의 User 모델의 메소드.
- set_username()을 활용하세요. 기존 사용자의 사용자 이름을 업데이트하는 방법.
예:
class CustomUser(AbstractUser): def get_username(self): return self.email # ... user = CustomUser.objects.get(username='john@example.com') user.set_username('jack@example.com') user.save()
위 내용은 사용자 정의 필드를 사용하여 Django 사용자 모델을 가장 잘 확장하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

파이썬에서 공장 패턴을 구현하면 통합 인터페이스를 만들어 다양한 유형의 객체를 생성 할 수 있습니다. 특정 단계는 다음과 같습니다. 1. 차량, 자동차, 비행기 및 기차와 같은 기본 클래스 및 여러 상속 클래스를 정의하십시오. 2. 공장 클래스 VehicleFactory를 생성하고 Create_vehicle 메소드를 사용하여 유형 매개 변수에 따라 해당 객체 인스턴스를 반환합니다. 3. my_car = factory.create_vehicle ( "car", "tesla")과 같은 공장 클래스를 통해 객체를 인스턴스화하십시오. 이 패턴은 코드의 확장 성과 유지 가능성을 향상 시키지만 복잡성에주의를 기울여야합니다.

Python에서 R 또는 R 접두사는 원래 문자열을 정의하고 모든 탈출 된 문자를 무시하고 문자열을 문자 그대로 해석하게하는 데 사용됩니다. 1) 탈출 캐릭터의 오해를 피하기 위해 정규 표현 및 파일 경로를 처리하는 데 적용됩니다. 2) 라인 브레이크와 같은 탈출 된 캐릭터를 보존 해야하는 경우에는 적용되지 않습니다. 예상치 못한 출력을 방지하기 위해 사용할 때는 신중한 점검이 필요합니다.

파이썬에서 __del__ 방법은 자원을 정리하는 데 사용되는 물체의 소멸자입니다. 1) 불확실한 실행 시간 : 쓰레기 수집 메커니즘에 의존합니다. 2) 순환 참조 : 약점을 사용하여 신속하게 호출을 할 수없고 처리 할 수 없을 수 있습니다. 3) 예외 처리 : __del__에 던져진 예외는 Try-excrect 블록을 사용하여 무시하고 캡처 할 수 있습니다. 4) 자원 관리를위한 모범 사례 : 자원을 관리하기 위해 진술 및 상황 관리자와 함께 사용하는 것이 좋습니다.

POP () 함수는 파이썬에서 사용하여 목록에서 요소를 제거하고 지정된 위치를 반환합니다. 1) 인덱스가 지정되지 않은 경우 POP ()는 기본적으로 목록의 마지막 요소를 제거하고 반환합니다. 2) 인덱스를 지정할 때 POP ()는 인덱스 위치에서 요소를 제거하고 반환합니다. 3) 색인 오류, 성능 문제, 대체 방법 및 사용 시점에주의를 기울이십시오.

Python은 주로 이미지 처리를 위해 두 개의 주요 라이브러리 베개 및 OpenCV를 사용합니다. 베개는 워터 마크 추가와 같은 간단한 이미지 처리에 적합하며 코드는 간단하고 사용하기 쉽습니다. OpenCV는 복잡한 이미지 처리 및 Edge Detection과 같은 컴퓨터 비전에 적합하지만 성능이 뛰어나지 만 메모리 관리에 대한 관심이 필요합니다.

Python에서 PCA 구현은 수동으로 코드를 작성하거나 Scikit-Learn 라이브러리를 사용하여 수행 할 수 있습니다. 수동으로 PCA를 구현하려면 다음 단계가 포함됩니다. 1) 데이터 중앙 집중화, 2) 공분산 매트릭스 계산, 3) 고유 값 및 고유 벡터 계산, 4) 주요 구성 요소를 정렬하고 선택하고 5) 데이터를 새 공간에 투사하십시오. 수동 구현은 알고리즘을 깊이 이해하는 데 도움이되지만 Scikit-Learn은보다 편리한 기능을 제공합니다.

파이썬에서 로그를 계산하는 것은 매우 간단하지만 흥미로운 것입니다. 가장 기본적인 질문부터 시작하겠습니다 : 파이썬에서 로그를 계산하는 방법은 무엇입니까? Python에서 로그를 계산하는 기본 방법 Python의 수학 모듈은 로그를 계산하기위한 기능을 제공합니다. 간단한 예를 들어 보자 : importmath# 자연 로그를 계산한다 (기본은 e) x = 10natural_log = math.log (x) print (f "자연 로그 ({x}) = {natural_log}")# base 10 log_base_10 = math.log10 (x) pri가있는 로그를 계산합니다.

파이썬에서 선형 회귀를 구현하기 위해 여러 관점에서 시작할 수 있습니다. 이것은 단순한 기능 호출 일뿐 만 아니라 통계, 수학적 최적화 및 기계 학습의 포괄적 인 적용을 포함합니다. 이 과정에 깊이있게 다이빙합시다. 파이썬에서 선형 회귀를 구현하는 가장 일반적인 방법은 쉽고 효율적인 도구를 제공하는 Scikit-Learn 라이브러리를 사용하는 것입니다. 그러나 선형 회귀의 원리와 구현 세부 사항에 대해 더 깊이 이해하려면 선형 회귀 알고리즘을 처음부터 작성할 수도 있습니다. Scikit-Learn의 선형 회귀 구현은 Scikit-Learn을 사용하여 선형 회귀의 구현을 캡슐화하여 쉽게 모델링하고 예측할 수 있습니다. 다음은 SC를 사용합니다


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.