커피 한잔 사주세요😄
*내 게시물에서는 CIFAR-10에 대해 설명합니다.
CIFAR10()은 아래와 같이 CIFAR-10 데이터세트를 사용할 수 있습니다.
*메모:
- 첫 번째 인수는 루트(필수 유형:str 또는 pathlib.Path)입니다. *절대경로, 상대경로 모두 가능합니다.
- 두 번째 인수는 train(Optional-Default:True-Type:bool)입니다. *True일 경우 학습 데이터(50,000개)를 사용하고, False일 경우 테스트 데이터(10,000개)를 사용합니다.
- 세 번째 인수는 변환(Optional-Default:None-Type:callable)입니다.
- 네 번째 인수는 target_transform(Optional-Default:None-Type:callable)입니다.
- 다섯 번째 인수는 download(Optional-Default:False-Type:bool)입니다.
*메모:
- True인 경우 데이터 세트가 인터넷에서 다운로드되어 루트에 추출(압축 해제)됩니다.
- True이고 데이터세트가 이미 다운로드된 경우 추출됩니다.
- True이고 데이터 세트가 이미 다운로드되어 추출된 경우 아무 일도 일어나지 않습니다.
- 데이터 세트가 이미 다운로드되어 추출된 경우 더 빠르므로 False여야 합니다.
- 여기에서 데이터세트(cifar-10-python.tar.gz)를 수동으로 다운로드하여 data/cifar-10-batches-py/로 추출할 수 있습니다.
from torchvision.datasets import CIFAR10 train_data = CIFAR10( root="data" ) train_data = CIFAR10( root="data", train=True, transform=None, target_transform=None, download=False ) test_data = CIFAR10( root="data", train=False ) len(train_data), len(test_data) # (50000, 10000) train_data # Dataset CIFAR10 # Number of datapoints: 50000 # Root location: data # Split: Train train_data.root # 'data' train_data.train # True print(train_data.transform) # None print(train_data.target_transform) # None train_data.download # bound method CIFAR10.download of Dataset CIFAR10 # Number of datapoints: 50000 # Root location: data # Split: Train> len(train_data.classes) # 10 train_data.classes # ['airplane', 'automobile', 'bird', 'cat', 'deer', # 'dog', 'frog', 'horse', 'ship', 'truck'] train_data[0] # (<pil.image.image image mode="RGB" size="32x32">, 6) train_data[1] # (<pil.image.image image mode="RGB" size="32x32">, 9) train_data[2] # (<pil.image.image image mode="RGB" size="32x32">, 9) train_data[3] # (<pil.image.image image mode="RGB" size="32x32">, 4) train_data[4] # (<pil.image.image image mode="RGB" size="32x32">, 1) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, (im, lab) in enumerate(data, start=1): plt.subplot(2, 5, i) plt.title(label=lab) plt.imshow(X=im) if i == 10: break plt.tight_layout() plt.show() show_images(data=train_data, main_title="train_data") show_images(data=test_data, main_title="test_data") </pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image>
위 내용은 CIFARin PyTorch의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python 또는 C를 선택하는 것은 프로젝트 요구 사항에 따라 다릅니다. 1) 빠른 개발, 데이터 처리 및 프로토 타입 설계가 필요한 경우 Python을 선택하십시오. 2) 고성능, 낮은 대기 시간 및 근접 하드웨어 제어가 필요한 경우 C를 선택하십시오.

매일 2 시간의 파이썬 학습을 투자하면 프로그래밍 기술을 효과적으로 향상시킬 수 있습니다. 1. 새로운 지식 배우기 : 문서를 읽거나 자습서를 시청하십시오. 2. 연습 : 코드를 작성하고 완전한 연습을합니다. 3. 검토 : 배운 내용을 통합하십시오. 4. 프로젝트 실무 : 실제 프로젝트에서 배운 것을 적용하십시오. 이러한 구조화 된 학습 계획은 파이썬을 체계적으로 마스터하고 경력 목표를 달성하는 데 도움이 될 수 있습니다.

2 시간 이내에 Python을 효율적으로 학습하는 방법 : 1. 기본 지식을 검토하고 Python 설치 및 기본 구문에 익숙한 지 확인하십시오. 2. 변수, 목록, 기능 등과 같은 파이썬의 핵심 개념을 이해합니다. 3. 예제를 사용하여 마스터 기본 및 고급 사용; 4. 일반적인 오류 및 디버깅 기술을 배우십시오. 5. 목록 이해력 사용 및 PEP8 스타일 안내서와 같은 성능 최적화 및 모범 사례를 적용합니다.

Python은 초보자 및 데이터 과학에 적합하며 C는 시스템 프로그래밍 및 게임 개발에 적합합니다. 1. 파이썬은 간단하고 사용하기 쉽고 데이터 과학 및 웹 개발에 적합합니다. 2.C는 게임 개발 및 시스템 프로그래밍에 적합한 고성능 및 제어를 제공합니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Python은 데이터 과학 및 빠른 개발에 더 적합한 반면 C는 고성능 및 시스템 프로그래밍에 더 적합합니다. 1. Python Syntax는 간결하고 학습하기 쉽고 데이터 처리 및 과학 컴퓨팅에 적합합니다. 2.C는 복잡한 구문을 가지고 있지만 성능이 뛰어나고 게임 개발 및 시스템 프로그래밍에 종종 사용됩니다.

파이썬을 배우기 위해 하루에 2 시간을 투자하는 것이 가능합니다. 1. 새로운 지식 배우기 : 목록 및 사전과 같은 1 시간 안에 새로운 개념을 배우십시오. 2. 연습 및 연습 : 1 시간을 사용하여 소규모 프로그램 작성과 같은 프로그래밍 연습을 수행하십시오. 합리적인 계획과 인내를 통해 짧은 시간에 Python의 핵심 개념을 마스터 할 수 있습니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

WebStorm Mac 버전
유용한 JavaScript 개발 도구

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기
