의도하지 않은 변경을 방지하기 위해 기본 매개변수 관리
Python에서 기본 매개변수는 변경 가능한 객체인 경우 때때로 예상치 못한 동작을 초래할 수 있습니다. 예를 들어 빈 목록을 함수의 기본 매개변수로 사용하면 목록이 이전 호출에서 추가된 이전 데이터를 "기억"할 수 있습니다.
다음 함수를 고려하세요.
def my_func(working_list=[]): working_list.append("a") print(working_list)
처음 호출되면 기본 목록이 생성되고 "a"가 추가됩니다. 그러나 함수에 대한 후속 호출은 동일한 목록을 계속 업데이트하므로 의도하지 않은 동작이 발생합니다. 이 문제를 해결하려면 함수가 호출될 때마다 새로운 빈 목록이 사용되도록 해야 합니다.
한 가지 접근 방식은 기본 매개 변수를 None으로 명시적으로 설정하고 함수 내에서 이를 확인하는 것입니다.
def my_func(working_list=None): if working_list is None: working_list = [] # alternative syntax: # working_list = [] if working_list is None else working_list working_list.append("a") print(working_list)
이 방법을 사용하면 명시적 인수 없이 함수를 호출할 때 새로운 빈 목록이 생성됩니다.
또는 Comprehension을 사용할 수도 있습니다. 목록을 생성하고 이를 기본 매개변수에 할당하려면:
def my_func(working_list=[[]]): working_list[0].append("a") print(working_list)
이 접근 방식은 호출할 때마다 새로운 빈 목록을 효과적으로 생성합니다.
Python 문서에서는 None을 기본 매개변수로 사용할 것을 권장합니다. 명시적으로 확인합니다. 없음과의 비교는 PEP 8 지침에 따라 "is" 또는 "is not" 연산자를 사용하여 이루어져야 합니다.
위 내용은 Python에서 변경 가능한 기본 매개 변수를 사용하여 예기치 않은 동작을 어떻게 방지할 수 있습니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

파이썬에서 공장 패턴을 구현하면 통합 인터페이스를 만들어 다양한 유형의 객체를 생성 할 수 있습니다. 특정 단계는 다음과 같습니다. 1. 차량, 자동차, 비행기 및 기차와 같은 기본 클래스 및 여러 상속 클래스를 정의하십시오. 2. 공장 클래스 VehicleFactory를 생성하고 Create_vehicle 메소드를 사용하여 유형 매개 변수에 따라 해당 객체 인스턴스를 반환합니다. 3. my_car = factory.create_vehicle ( "car", "tesla")과 같은 공장 클래스를 통해 객체를 인스턴스화하십시오. 이 패턴은 코드의 확장 성과 유지 가능성을 향상 시키지만 복잡성에주의를 기울여야합니다.

Python에서 R 또는 R 접두사는 원래 문자열을 정의하고 모든 탈출 된 문자를 무시하고 문자열을 문자 그대로 해석하게하는 데 사용됩니다. 1) 탈출 캐릭터의 오해를 피하기 위해 정규 표현 및 파일 경로를 처리하는 데 적용됩니다. 2) 라인 브레이크와 같은 탈출 된 캐릭터를 보존 해야하는 경우에는 적용되지 않습니다. 예상치 못한 출력을 방지하기 위해 사용할 때는 신중한 점검이 필요합니다.

파이썬에서 __del__ 방법은 자원을 정리하는 데 사용되는 물체의 소멸자입니다. 1) 불확실한 실행 시간 : 쓰레기 수집 메커니즘에 의존합니다. 2) 순환 참조 : 약점을 사용하여 신속하게 호출을 할 수없고 처리 할 수 없을 수 있습니다. 3) 예외 처리 : __del__에 던져진 예외는 Try-excrect 블록을 사용하여 무시하고 캡처 할 수 있습니다. 4) 자원 관리를위한 모범 사례 : 자원을 관리하기 위해 진술 및 상황 관리자와 함께 사용하는 것이 좋습니다.

POP () 함수는 파이썬에서 사용하여 목록에서 요소를 제거하고 지정된 위치를 반환합니다. 1) 인덱스가 지정되지 않은 경우 POP ()는 기본적으로 목록의 마지막 요소를 제거하고 반환합니다. 2) 인덱스를 지정할 때 POP ()는 인덱스 위치에서 요소를 제거하고 반환합니다. 3) 색인 오류, 성능 문제, 대체 방법 및 사용 시점에주의를 기울이십시오.

Python은 주로 이미지 처리를 위해 두 개의 주요 라이브러리 베개 및 OpenCV를 사용합니다. 베개는 워터 마크 추가와 같은 간단한 이미지 처리에 적합하며 코드는 간단하고 사용하기 쉽습니다. OpenCV는 복잡한 이미지 처리 및 Edge Detection과 같은 컴퓨터 비전에 적합하지만 성능이 뛰어나지 만 메모리 관리에 대한 관심이 필요합니다.

Python에서 PCA 구현은 수동으로 코드를 작성하거나 Scikit-Learn 라이브러리를 사용하여 수행 할 수 있습니다. 수동으로 PCA를 구현하려면 다음 단계가 포함됩니다. 1) 데이터 중앙 집중화, 2) 공분산 매트릭스 계산, 3) 고유 값 및 고유 벡터 계산, 4) 주요 구성 요소를 정렬하고 선택하고 5) 데이터를 새 공간에 투사하십시오. 수동 구현은 알고리즘을 깊이 이해하는 데 도움이되지만 Scikit-Learn은보다 편리한 기능을 제공합니다.

파이썬에서 로그를 계산하는 것은 매우 간단하지만 흥미로운 것입니다. 가장 기본적인 질문부터 시작하겠습니다 : 파이썬에서 로그를 계산하는 방법은 무엇입니까? Python에서 로그를 계산하는 기본 방법 Python의 수학 모듈은 로그를 계산하기위한 기능을 제공합니다. 간단한 예를 들어 보자 : importmath# 자연 로그를 계산한다 (기본은 e) x = 10natural_log = math.log (x) print (f "자연 로그 ({x}) = {natural_log}")# base 10 log_base_10 = math.log10 (x) pri가있는 로그를 계산합니다.

파이썬에서 선형 회귀를 구현하기 위해 여러 관점에서 시작할 수 있습니다. 이것은 단순한 기능 호출 일뿐 만 아니라 통계, 수학적 최적화 및 기계 학습의 포괄적 인 적용을 포함합니다. 이 과정에 깊이있게 다이빙합시다. 파이썬에서 선형 회귀를 구현하는 가장 일반적인 방법은 쉽고 효율적인 도구를 제공하는 Scikit-Learn 라이브러리를 사용하는 것입니다. 그러나 선형 회귀의 원리와 구현 세부 사항에 대해 더 깊이 이해하려면 선형 회귀 알고리즘을 처음부터 작성할 수도 있습니다. Scikit-Learn의 선형 회귀 구현은 Scikit-Learn을 사용하여 선형 회귀의 구현을 캡슐화하여 쉽게 모델링하고 예측할 수 있습니다. 다음은 SC를 사용합니다


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.