OpenCV에서 cv2.inRange를 사용하여 색상 감지를 위한 HSV 경계 결정
색상 감지를 위해 OpenCV에서 cv2.inRange 함수를 사용할 때, 적절한 상한 및 하한 HSV(색조, 채도, 값) 경계를 선택하는 것이 중요합니다. 대상 색상을 식별합니다.
문제 식별:
아래 그림과 같이 주황색 뚜껑이 달린 커피 캔이 포함된 이미지의 예를 생각해 보세요.
[주황색 뚜껑이 달린 커피 캔 이미지]
목표는 분리할 HSV 경계를 결정하는 것입니다. 주황색 뚜껑. 처음에는 (18, 40, 90) ~ (27, 255, 255) 범위를 시도했지만 예상치 못한 결과가 나왔습니다.
해결책 1: 스케일 변환
다양한 응용 프로그램에서는 HSV 값에 대해 서로 다른 척도를 사용할 수 있다는 점에 유의하는 것이 중요합니다. OpenCV는 H: 0-179, S: 0-255, V: 0-255의 스케일을 사용하는 반면 일부 다른 응용 프로그램은 H: 0-360, S: 0-100, V: 0-100의 스케일을 사용할 수 있습니다. 따라서 그에 맞게 HSV 값을 변환해야 합니다.
해결책 2: 색 공간 변환
OpenCV는 BGR(Blue, Green, Red) 색상 형식을 사용합니다. 기본적으로 이미지는 RGB(빨간색, 녹색, 파란색) 형식일 수 있습니다. 이미지를 HSV로 올바르게 변환하려면 cv2.COLOR_RGB2HSV 대신 cv2.COLOR_BGR2HSV를 사용해야 합니다.
수정된 코드:
import cv2 import numpy as np image = cv2.imread('kaffee.png') # Revised HSV boundaries considering scale conversion ORANGE_MIN = np.array([5, 50, 50], np.uint8) ORANGE_MAX = np.array([15, 255, 255], np.uint8) # Convert image to HSV color space hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # Apply color filtering mask = cv2.inRange(hsv, ORANGE_MIN, ORANGE_MAX) # Save the masked image cv2.imwrite('kaffee_out.png', mask)
이 수정된 접근 방식은 다음과 같습니다. 커피 캔의 주황색 뚜껑을 분리하면 더욱 정확한 결과를 얻을 수 있습니다.
위 내용은 cv2.inRange를 사용하여 OpenCV에서 색상 감지를 위한 HSV 경계를 정확하게 결정하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python의 유연성은 다중 파리가 지원 및 동적 유형 시스템에 반영되며, 사용 편의성은 간단한 구문 및 풍부한 표준 라이브러리에서 나옵니다. 유연성 : 객체 지향, 기능 및 절차 프로그래밍을 지원하며 동적 유형 시스템은 개발 효율성을 향상시킵니다. 2. 사용 편의성 : 문법은 자연 언어에 가깝고 표준 라이브러리는 광범위한 기능을 다루며 개발 프로세스를 단순화합니다.

Python은 초보자부터 고급 개발자에 이르기까지 모든 요구에 적합한 단순성과 힘에 호의적입니다. 다목적 성은 다음과 같이 반영됩니다. 1) 배우고 사용하기 쉽고 간단한 구문; 2) Numpy, Pandas 등과 같은 풍부한 라이브러리 및 프레임 워크; 3) 다양한 운영 체제에서 실행할 수있는 크로스 플랫폼 지원; 4) 작업 효율성을 향상시키기위한 스크립팅 및 자동화 작업에 적합합니다.

예, 하루에 2 시간 후에 파이썬을 배우십시오. 1. 합리적인 학습 계획 개발, 2. 올바른 학습 자원을 선택하십시오. 3. 실습을 통해 학습 된 지식을 통합하십시오. 이 단계는 짧은 시간 안에 Python을 마스터하는 데 도움이 될 수 있습니다.

Python은 빠른 개발 및 데이터 처리에 적합한 반면 C는 고성능 및 기본 제어에 적합합니다. 1) Python은 간결한 구문과 함께 사용하기 쉽고 데이터 과학 및 웹 개발에 적합합니다. 2) C는 고성능과 정확한 제어를 가지고 있으며 게임 및 시스템 프로그래밍에 종종 사용됩니다.

Python을 배우는 데 필요한 시간은 개인마다 다릅니다. 주로 이전 프로그래밍 경험, 학습 동기 부여, 학습 리소스 및 방법 및 학습 리듬의 영향을받습니다. 실질적인 학습 목표를 설정하고 실용적인 프로젝트를 통해 최선을 다하십시오.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

드림위버 CS6
시각적 웹 개발 도구

Dreamweaver Mac版
시각적 웹 개발 도구
