NumPy에서 효율적인 배열 매핑 탐색
이 토론에서는 NumPy 배열을 통해 함수를 매핑하는 가장 효율적인 방법을 탐구합니다. 일반적인 접근 방식 중 하나는 목록 이해를 활용한 후 NumPy 배열로 다시 변환하는 것입니다.
import numpy as np x = np.array([1, 2, 3, 4, 5]) squarer = lambda t: t ** 2 squares = np.array([squarer(xi) for xi in x])
그러나 이 접근 방식은 중간 Python 목록의 생성 및 변환으로 인해 비효율성을 나타낼 수 있습니다. 잠재적으로 향상된 성능을 제공할 수 있는 대체 방법을 살펴보겠습니다.
기본 NumPy 함수 활용
대상 함수가 NumPy에 이미 구현되어 있는 경우 이를 직접 활용하는 것이 가장 좋습니다. 설명:
x ** 2
이 접근 방식은 고유한 최적화로 인해 다른 방법보다 훨씬 빠릅니다. NumPy의 기본 기능.
함수 벡터화
원하는 함수가 NumPy의 기본 기능이 아닌 경우 벡터화는 함수 요소별로 적용할 수 있는 강력한 기술입니다. 배열. 이는 다음을 사용하여 수행할 수 있습니다.
vf = np.vectorize(f) vf(x)
이 접근 방식은 벡터화된 작업을 위한 효율적인 구현을 제공합니다.
fromiter() 사용
fromiter() 제공된 함수와 배열을 기반으로 요소를 생성하는 반복자를 생성하는 데 함수를 사용할 수 있습니다. 값:
np.fromiter((f(xi) for xi in x), x.dtype)
이 접근 방식은 반복기에서 사용자 정의 배열 요소를 생성하는 데 특히 적합합니다.
성능 비교
실증적 테스트를 통해 상당한 성능이 나타났습니다. 다양한 매핑 방법의 차이점 함수가 NumPy에서 벡터화되면 해당 함수를 직접 사용하는 것은 속도 측면에서 비교할 수 없습니다. 사용자 정의 함수의 경우 벡터화 또는 fromiter()는 목록 이해 기반 방법에 비해 상당한 이점을 제공하는 경우가 많습니다.
결론
NumPy 배열을 통한 함수 매핑에 대한 가장 효율적인 접근 방식입니다. 특정 기능 및 데이터 특성에 따라 다릅니다. 가능하다면 기본 NumPy 기능을 활용하는 것이 좋습니다. 벡터화 및 fromiter()는 사용자 정의 기능에 대한 효율적인 대안을 제공합니다. 특정 시나리오에 대한 최적의 방법을 결정하려면 성능 테스트가 필수적입니다.
위 내용은 NumPy 배열에 함수를 매핑하는 가장 효율적인 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python은 해석 된 언어이지만 편집 프로세스도 포함됩니다. 1) 파이썬 코드는 먼저 바이트 코드로 컴파일됩니다. 2) 바이트 코드는 Python Virtual Machine에 의해 해석되고 실행됩니다. 3)이 하이브리드 메커니즘은 파이썬이 유연하고 효율적이지만 완전히 편집 된 언어만큼 빠르지는 않습니다.

USEAFORLOOPHENTERATINGOVERASERASERASPECIFICNUMBEROFTIMES; USEAWHILLOOPWHENTINUTIMONDITINISMET.FORLOOPSAREIDEALFORKNOWNSEDINGENCENCENS, WHILEWHILELOOPSSUITSITUATIONS WITHERMINGEDERITERATIONS.

Pythonloopscanleadtoerrors likeinfiniteloops, modifyinglistsdizeration, off-by-by-byerrors, zero-indexingissues, andnestedloopineficiencies.toavoidthese : 1) aing'i

ForloopSareadvantageForkNowniTerations 및 Sequence, OffingSimplicityAndInamicConditionSandunkNowniTitionS 및 ControlOver Terminations를 제공합니다

Pythonusesahybridmodelofilationandlostretation : 1) ThePyThoninterPretreCeterCompileSsourcodeIntOplatform-IndependentBecode.

Pythonisbothingretedandcompiled.1) 1) it 'scompiledtobytecodeforportabilityacrossplatforms.2) thebytecodeisthentenningreted, withfordiNamictyTeNgreted, WhithItmayBowerShiledlanguges.

forloopsareusedwhendumberofitessiskNowninadvance, whilewhiloopsareusedwhentheationsdepernationsorarrays.2) whiloopsureatableforscenarioScontiLaspecOndCond


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구