금융 시장의 역동적인 특성으로 인해 거래 전략을 개발하고 검증하려면 신뢰할 수 있는 데이터를 활용해야 합니다. 백테스팅 환경 내에서 고품질 데이터를 효율적으로 통합하는 것은 트레이더와 분석가에게 매우 중요합니다. TraderMade API는 정확하고 상세하며 포괄적인 시장 데이터를 제공하여 이러한 전문가에게 힘을 실어줍니다.
이 분석에서는 TraderMade의 시계열 API를 활용하여 과거 데이터를 얻고 간단한 단순 이동 평균(SMA) 교차 전략을 실행하며 과거 성과를 평가합니다.
SMA 크로스오버 전략 소개
단순이동평균(SMA) 교차 전략은 기본적인 기술적 분석 기법입니다. 여기에는 두 가지 SMA, 즉 가격 변동에 더 높은 민감도를 나타내는 단기 SMA와 단기 가격 변동성의 영향을 완화하는 장기 SMA를 관찰하는 작업이 포함됩니다.
단기 SMA가 장기 SMA를 초과하면 매수 신호가 생성되어 잠재적인 상승 추세를 나타냅니다. 반대로 단기 SMA가 장기 SMA 아래로 떨어지면 매도 신호가 발생하여 잠재적인 하락 추세를 나타냅니다.
데이터 수집
다음과 같이 TraderMade의 SDK를 설치하여 시작하세요.
!pip install tradermade
우리는 설치된 소프트웨어 개발 키트(SDK)를 사용하여 외환(외환) 쌍에 대한 시간별 시계열 데이터를 검색합니다. 후속 Python 코드는 EUR/USD 통화 쌍에 대한 데이터를 얻는 방법을 보여줍니다.
import tradermade as tm import pandas as pd def fetch_forex_data(api_key, currency, start_date, end_date, interval="hourly", fields=["open", "high", "low", "close"]): # Set API key tm.set_rest_api_key(api_key) # Fetch the data data = tm.timeseries(currency=currency, start=start_date, end=end_date, interval=interval, fields=fields) # Convert data directly to DataFrame df = pd.DataFrame(data) # Convert 'date' column to datetime df["date"] = pd.to_datetime(df["date"]) # Set 'date' as the index df.set_index("date", inplace=True) return df # Adjust as needed api_key = "YOUR TRADERMADE API KEY" currency = "EURUSD" start_date = "2024-11-01-00:00" end_date = "2024-11-27-05:12" # Fetch the data and display the first few rows forex_data = fetch_forex_data(api_key, currency, start_date, end_date) forex_data = forex_data.rename(columns={"open": "Open", "high": "High", "low": "Low", "close": "Close"}) forex_data.head()
백테스팅을 위한 데이터 수집 및 전처리가 성공적으로 완료되었습니다.
간단한 SMA 교차 전략의 구현 및 백테스트
이 섹션에서는 백테스팅 Python 라이브러리를 활용하여 SMA 크로스오버 전략을 정의하고 평가합니다. 백테스팅 라이브러리에 익숙하지 않은 사람들에게는 기술 거래 전략 백테스팅을 위한 탁월하고 강력한 Python 프레임워크로 간주됩니다. 이러한 전략에는 SMA 크로스오버, RSI 크로스오버, 평균 반전 전략, 모멘텀 전략 등 다양한 범위가 포함됩니다.
import numpy as np from backtesting import Backtest, Strategy from backtesting.lib import crossover from backtesting.test import SMA # Define the SMA crossover trading strategy class SMACrossoverStrategy(Strategy): def init(self): # Calculate shorter-period SMAs for limited data price = self.data.Close self.short_sma = self.I(SMA, price, 20) # Short window self.long_sma = self.I(SMA, price, 60) # Long window def next(self): # Check for crossover signals if crossover(self.short_sma, self.long_sma): self.buy() elif crossover(self.long_sma, self.short_sma): self.sell() # Initialize and run the backtest bt = Backtest(forex_data, SMACrossoverStrategy, cash=10000, commission=.002) result = bt.run() # Display the backtest results print("Backtest Results:") print(result)
이 전략은 20일 SMA와 60일 SMA라는 두 가지 이동 평균을 사용합니다. 단기 SMA가 장기 SMA를 초과하면 매수 주문이 실행됩니다. 반대로, 단기 SMA가 장기 SMA보다 낮아지면 매도 주문이 실행됩니다. 25일의 거래 기간 내에 이 간단한 전략은 6번의 거래를 통해 $243의 이익을 얻었습니다.
주식 및 SMA 곡선 분석
다음 Python 코드는 SMA 교차 전략의 성능을 평가합니다. SMA는 가격 추세의 시각화를 촉진하고 매수/매도 신호를 생성하는 교차점을 식별합니다. 자기자본 곡선은 성과 지표 역할을 하며 이러한 신호가 포트폴리오 성장에 미치는 영향을 보여줍니다.
두 곡선을 통합함으로써 거래자는 교차 이벤트와 포트폴리오 가치 변화 간의 상관관계를 쉽게 관찰할 수 있으며 SMA 교차 전략의 효율성에 대한 중요한 통찰력을 제공합니다.
Plotly는 자산 및 SMA 곡선을 시각화하는 데 활용되므로 트레이더는 전략의 수익성을 효과적으로 평가할 수 있습니다.
!pip install tradermade
결론
성공적인 백테스팅에는 정확하고 빈도가 높은 데이터가 필요하며 TraderMade의 API는 원활한 통합을 촉진합니다. 다양한 전략을 탐색하는 초보자이든 정교한 모델을 개발하는 숙련된 분석가이든 관계없이 귀하의 경험 수준에 관계없이 회사의 제품은 필요한 도구를 제공합니다.
TraderMade의 API를 귀하의 작업 흐름에 통합할 준비가 되셨습니까? 오늘 여정을 시작하고 개념을 현실로 바꿔보세요.
위 내용은 Forex API를 사용하여 전문가처럼 백테스트의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

ArraysareBetterForElement-WiseOperationsDuetOfasterAcccessandoptimizedimmentations.1) ArraysHaveCecontIguousMemoryFordirectAccess, 향상

Numpy에서 전체 배열의 수학적 작업은 벡터화 된 작업을 통해 효율적으로 구현 될 수 있습니다. 1) 추가 (ARR 2)와 같은 간단한 연산자를 사용하여 배열에서 작업을 수행하십시오. 2) Numpy는 기본 C 언어 라이브러리를 사용하여 컴퓨팅 속도를 향상시킵니다. 3) 곱셈, 분할 및 지수와 같은 복잡한 작업을 수행 할 수 있습니다. 4) 배열 모양이 호환되도록 방송 작업에주의를 기울이십시오. 5) NP.Sum ()과 같은 Numpy 함수를 사용하면 성능을 크게 향상시킬 수 있습니다.

Python에는 요소를 목록에 삽입하는 두 가지 주요 방법이 있습니다. 1) 삽입 (인덱스, 값) 메소드를 사용하여 지정된 인덱스에 요소를 삽입 할 수 있지만 큰 목록의 시작 부분에서 삽입하는 것은 비효율적입니다. 2) Append (value) 메소드를 사용하여 목록 끝에 요소를 추가하여 매우 효율적입니다. 대형 목록의 경우 Append ()를 사용하거나 Deque 또는 Numpy Array를 사용하여 성능을 최적화하는 것이 좋습니다.

TomakeApythonscriptexecutableonBothunixandwindows : 1) addashebangline (#!/usr/bin/envpython3) andusechmod xtomakeitexecutableonix.2) onwindows, inristpythonisinstalledandassociatedwith.pybattfile (run.bat) torunthescrest.

"CommandNotFound"오류가 발생하면 다음 사항을 확인해야합니다. 1. 스크립트가 존재하고 경로가 올바른지 확인하십시오. 2. 파일 권한을 확인하고 CHMOD를 사용하여 필요한 경우 실행 권한을 추가하십시오. 3. 스크립트 인터프리터가 설치되었는지 확인하십시오. 4. 스크립트 시작시 셰 잔 라인이 올바른지 확인하십시오. 그렇게하면 스크립트 작업 문제를 효과적으로 해결하고 코딩 프로세스가 원활하게 보장 할 수 있습니다.

ArraysareGenerallyMorememory- 효율적 인 thanlistsortingnumericaldataduetotheirfixed-sizenatureanddirectmemoryAccess.1) ArraysStoreElementsInacontiguousBlock, retoneverHead-fompointerSormetAdata.2) 목록, 종종 implementededymamamicArraysorlinkedStruct

ToconvertapyThonlisttoAnarray, usethearraymodule : 1) importThearrayModule, 2) CreateAlist, 3) Usearray (typecode, list) toconvertit, thetypecodelike'i'forintegers

Python 목록은 다양한 유형의 데이터를 저장할 수 있습니다. 예제 목록에는 정수, 문자열, 부동 소수점 번호, 부울, 중첩 목록 및 사전이 포함되어 있습니다. 목록 유연성은 데이터 처리 및 프로토 타이핑에서 가치가 있지만 코드의 가독성과 유지 관리를 보장하기 위해주의해서 사용해야합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

WebStorm Mac 버전
유용한 JavaScript 개발 도구

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)