>백엔드 개발 >파이썬 튜토리얼 >Python, LangChain 및 벡터 검색을 사용하여 확장 가능한 AI 채팅 애플리케이션 구축

Python, LangChain 및 벡터 검색을 사용하여 확장 가능한 AI 채팅 애플리케이션 구축

DDD
DDD원래의
2024-12-13 01:34:10445검색

Building a Scalable AI Chat Application with Python, LangChain and Vector Search

생산 준비가 완료된 AI 채팅 애플리케이션을 구축하려면 강력한 벡터 스토리지와 효율적인 워크플로 관리가 필요합니다. Astra DB와 Langflow를 사용하여 이를 생성하는 방법을 살펴보겠습니다.

환경설정

먼저 필수 종속성을 사용하여 Python 환경을 설정해 보겠습니다.

from langchain.vectorstores import AstraDB
from langchain_core.embeddings import Embeddings
from astrapy.info import CollectionVectorServiceOptions

벡터 스토리지 구성

Astra DB는 AI 애플리케이션에 최적화된 엔터프라이즈급 벡터 스토리지 기능을 제공합니다. 초기화하는 방법은 다음과 같습니다.

openai_vectorize_options = CollectionVectorServiceOptions(
    provider="openai",
    model_name="text-embedding-3-small",
    authentication={
        "providerKey": "OPENAI_API_KEY"
    }
)

vector_store = AstraDBVectorStore(
    collection_name="chat_history",
    api_endpoint="YOUR_ASTRA_DB_ENDPOINT",
    token="YOUR_ASTRA_DB_TOKEN",
    namespace="YOUR_NAMESPACE",
    collection_vector_service_options=openai_vectorize_options
)

채팅 인터페이스 구축

Langflow를 사용하여 채팅 애플리케이션의 시각적 작업 흐름을 만들어 보겠습니다. Langflow는 개발 프로세스를 단순화하는 드래그 앤 드롭 인터페이스를 제공합니다. 워크플로는 다음으로 구성됩니다.

구성요소 설정

  • 입력 처리
  • 벡터 검색 통합
  • 응답 생성
  • 출력 형식

문서 삽입 및 검색

Astra DB의 벡터 검색을 통해 효율적인 유사성 매칭이 가능합니다.

retriever = vector_store.as_retriever(
    search_type="similarity_score_threshold",
    search_kwargs={
        "k": 1,
        "score_threshold": 0.5
    }
)

생산 고려 사항

확장성
Astra DB는 AI 프로젝트를 위한 대규모 확장성을 제공하여 모든 클라우드 플랫폼에서 엔터프라이즈급 보안으로 수조 개의 벡터를 지원합니다.

보안
이 플랫폼은 PCI 보안 위원회 표준을 준수하고 PHI 및 PII 데이터를 보호합니다.

실적
Astra DB는 다음을 제공합니다:

  • 동시 쿼리/업데이트 기능
  • 초저지연
  • 벡터, 비벡터 및 스트리밍 데이터가 혼합된 워크로드에 대한 기본 지원

워크플로 통합

Langflow의 시각적 IDE를 사용하면 신속한 개발과 반복이 가능합니다.

주요 기능

  • 구성 요소 연결을 위한 드래그 앤 드롭 인터페이스
  • 공통 패턴을 위해 사전 제작된 템플릿
  • 실시간 테스트 및 디버깅
  • 맞춤형 구성요소 지원

이 아키텍처는 고성능 및 보안 표준을 유지하면서 요구 사항에 따라 확장할 수 있는 프로덕션용 AI 채팅 애플리케이션을 구축하기 위한 강력한 기반을 제공합니다.

위 내용은 Python, LangChain 및 벡터 검색을 사용하여 확장 가능한 AI 채팅 애플리케이션 구축의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명:
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.