Pandas MultiIndex DataFrame에서 행 선택
문제 요약
MultiIndex가 포함된 Pandas DataFrame이 있는 경우 특정 값을 기반으로 행을 선택하는 방법/ 각 인덱스 수준의 레이블은 무엇입니까?
슬라이싱 loc
df.loc[key, :]
- key는 각 인덱스 수준에 하나씩 있는 레이블 튜플입니다.
- 이는 다양한 수준의 특정 값을 기반으로 행을 선택하는 편리하고 간결한 방법을 제공합니다.
슬라이싱 xs
df.xs(level_key, level=level_name, drop_level=True/False)
- level_key는 특정 인덱스 레벨의 키입니다.
- drop_level은 결과 DataFrame에서 레벨을 삭제해야 하는지 여부를 제어합니다.
- xs는 단일 레벨에서 슬라이싱할 때 특히 유용합니다.
다음으로 필터링 query
df.query("condition")
- condition은 필터링 기준을 지정하는 부울 표현식입니다.
- 여러 인덱스 수준에 걸쳐 유연한 필터링을 지원합니다.
get_level_values 사용
mask = df.index.get_level_values(level_name).isin(values_list) selected_rows = df[mask]
- 부울 생성 특정 인덱스 수준의 값을 기반으로 마스크를 만듭니다.
- 더 복잡한 필터링 작업이나 여러 값을 분할할 때 유용합니다.
예
예 1: '1' 수준에서 특정 값을 가진 행을 선택하고 'two':
# Using loc selected_rows = df.loc[['a'], ['t', 'u']] # Using xs selected_rows = df.xs('a', level='one', drop_level=False) selected_rows = selected_rows.xs(['t', 'u'], level='two') # Using query selected_rows = df.query("one == 'a' and two.isin(['t', 'u'])") # Using get_level_values one_mask = df.index.get_level_values('one') == 'a' two_mask = df.index.get_level_values('two').isin(['t', 'u']) selected_rows = df[one_mask & two_mask]
예 2: 'two' 수준의 수치적 부등식을 기준으로 행 필터링:
# Using query selected_rows = df.query("two > 5") # Using get_level_values two_mask = df.index.get_level_values('two') > 5 selected_rows = df[two_mask]
팁 및 고려 사항
- 슬라이싱/필터링 작업의 복잡성을 고려하세요. 그에 따라 적절한 방법을 선택하세요.
- 단일 또는 소수 수준의 간단한 슬라이싱에는 loc 또는 xs가 선호됩니다.
- 복잡한 필터링이나 여러 값에 대한 슬라이싱의 경우 query 또는 get_level_values를 다음과 같이 사용하는 것이 좋습니다. 더 많은 유연성을 제공합니다.
- 복잡한 슬라이싱 작업을 지정하려면 pd.IndexSlice를 사용하세요. loc.
- sort_index()는 정렬되지 않은 MultiIndex가 있는 대규모 DataFrame의 성능을 향상시킬 수 있습니다.
위 내용은 Pandas MultiIndex DataFrames에서 행을 효율적으로 선택하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Linux 터미널에서 Python 버전을 보려고 할 때 Linux 터미널에서 Python 버전을 볼 때 권한 문제에 대한 솔루션 ... Python을 입력하십시오 ...

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

파이썬 객체의 직렬화 및 사막화는 사소한 프로그램의 주요 측면입니다. 무언가를 Python 파일에 저장하면 구성 파일을 읽거나 HTTP 요청에 응답하는 경우 객체 직렬화 및 사태화를 수행합니다. 어떤 의미에서, 직렬화와 사제화는 세계에서 가장 지루한 것들입니다. 이 모든 형식과 프로토콜에 대해 누가 걱정합니까? 일부 파이썬 객체를 지속하거나 스트리밍하여 나중에 완전히 검색하려고합니다. 이것은 세상을 개념적 차원에서 볼 수있는 좋은 방법입니다. 그러나 실제 수준에서 선택한 직렬화 체계, 형식 또는 프로토콜은 속도, 보안, 유지 보수 상태 및 프로그램의 기타 측면을 결정할 수 있습니다.

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

Python의 통계 모듈은 강력한 데이터 통계 분석 기능을 제공하여 생물 통계 및 비즈니스 분석과 같은 데이터의 전반적인 특성을 빠르게 이해할 수 있도록 도와줍니다. 데이터 포인트를 하나씩 보는 대신 평균 또는 분산과 같은 통계를보고 무시할 수있는 원래 데이터에서 트렌드와 기능을 발견하고 대형 데이터 세트를보다 쉽고 효과적으로 비교하십시오. 이 튜토리얼은 평균을 계산하고 데이터 세트의 분산 정도를 측정하는 방법을 설명합니다. 달리 명시되지 않는 한,이 모듈의 모든 함수는 단순히 평균을 합산하는 대신 평균 () 함수의 계산을 지원합니다. 부동 소수점 번호도 사용할 수 있습니다. 무작위로 가져옵니다 수입 통계 Fracti에서

이 튜토리얼은 간단한 나무 탐색을 넘어서 DOM 조작에 중점을 둔 아름다운 수프에 대한 이전 소개를 바탕으로합니다. HTML 구조를 수정하기위한 효율적인 검색 방법과 기술을 탐색하겠습니다. 일반적인 DOM 검색 방법 중 하나는 EX입니다

이 기사는 Python 개발자가 CLIS (Command-Line Interfaces) 구축을 안내합니다. Typer, Click 및 Argparse와 같은 라이브러리를 사용하여 입력/출력 처리를 강조하고 CLI 유용성을 향상시키기 위해 사용자 친화적 인 디자인 패턴을 홍보하는 세부 정보.

이 기사는 Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask 및 요청과 같은 인기있는 Python 라이브러리에 대해 설명하고 과학 컴퓨팅, 데이터 분석, 시각화, 기계 학습, 웹 개발 및 H에서의 사용에 대해 자세히 설명합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

드림위버 CS6
시각적 웹 개발 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경
