커피 한잔 사주세요😄
*내 게시물은 Caltech 101에 대해 설명합니다.
Caltech101()은 아래와 같이 Caltech 101 데이터 세트를 사용할 수 있습니다.
*메모:
- 첫 번째 인수는 루트(필수 유형:str 또는 pathlib.Path)입니다. *절대경로, 상대경로 모두 가능합니다.
- 두 번째 인수는 target_type(Optional-Default:"category"-Type:str 또는 튜플 또는 str 목록)입니다.
*메모:
- "카테고리" 및/또는 "주석"을 설정할 수 있습니다.
- 101개 카테고리(클래스)의 라벨 및/또는 주석이 포함된 8.677개의 이미지가 반환됩니다.
- 세 번째 인수는 변환(Optional-Default:None-Type:callable)입니다.
- 네 번째 인수는 target_transform(Optional-Default:None-Type:callable)입니다.
- 다섯 번째 인수는 download(Optional-Default:False-Type:bool)입니다.
*메모:
- True인 경우 데이터 세트가 인터넷에서 다운로드되어 루트에 추출(압축 해제)됩니다.
- True이고 데이터세트가 이미 다운로드된 경우 추출됩니다.
- True이고 데이터 세트가 이미 다운로드되어 추출된 경우 아무 일도 일어나지 않습니다.
- 데이터 세트가 이미 다운로드되어 추출된 경우 더 빠르므로 False여야 합니다.
- 데이터 세트를 다운로드하려면 gdown이 필요합니다.
- 여기에서 데이터 세트(101_ObjectCategories.tar.gz 및 Annotations.tar)를 data/caltech101/에 수동으로 다운로드하고 추출할 수 있습니다.
- 이미지 인덱스의 카테고리(레이블)는 Faces(0)는 0~434, Faces_easy(1)은 435~869, Leopards(2)는 870~1069이고, 오토바이(3)는 1070~1867, 아코디언(4)은 1868~1922, 비행기(5)는 1923~2722, 앵커(6)은 2723~2764, ant(7)은 2765~2806, barrel(8)은 2807~2853, bass(9)는 2854~2907 등 .
from torchvision.datasets import Caltech101 category_data = Caltech101( root="data" ) category_data = Caltech101( root="data", target_type="category", transform=None, target_transform=None, download=False ) annotation_data = Caltech101( root="data", target_type="annotation" ) all_data = Caltech101( root="data", target_type=["category", "annotation"] ) len(category_data), len(annotation_data), len(all_data) # (8677, 8677, 8677) category_data # Dataset Caltech101 # Number of datapoints: 8677 # Root location: data\caltech101 # Target type: ['category'] category_data.root # 'data/caltech101' category_data.target_type # ['category'] print(category_data.transform) # None print(category_data.target_transform) # None category_data.download # <bound method caltech101.download of dataset caltech101 number datapoints: root location: data target type:> len(category_data.categories) # 101 category_data.categories # ['Faces', 'Faces_easy', 'Leopards', 'Motorbikes', 'accordion', # 'airplanes', 'anchor', 'ant', 'barrel', 'bass', 'beaver', # 'binocular', 'bonsai', 'brain', 'brontosaurus', 'buddha', # 'butterfly', 'camera', 'cannon', 'car_side', 'ceiling_fan', # 'cellphone', 'chair', 'chandelier', 'cougar_body', 'cougar_face', ...] len(category_data.annotation_categories) # 101 category_data.annotation_categories # ['Faces_2', 'Faces_3', 'Leopards', 'Motorbikes_16', 'accordion', # 'Airplanes_Side_2', 'anchor', 'ant', 'barrel', 'bass', # 'beaver', 'binocular', 'bonsai', 'brain', 'brontosaurus', # 'buddha', 'butterfly', 'camera', 'cannon', 'car_side', # 'ceiling_fan', 'cellphone', 'chair', 'chandelier', 'cougar_body', ...] category_data[0] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="510x337">, 0) category_data[1] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="519x343">, 0) category_data[2] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="492x325">, 0) category_data[435] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="290x334">, 1) category_data[870] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="192x128">, 2) annotation_data[0] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="510x337">, # array([[10.00958466, 8.18210863, 8.18210863, 10.92332268, ...], # [132.30670927, 120.42811502, 103.52396166, 90.73162939, ...]])) annotation_data[1] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="519x343">, # array([[15.19298246, 13.71929825, 15.19298246, 19.61403509, ...], # [121.5877193, 103.90350877, 80.81578947, 64.11403509, ...]])) annotation_data[2] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="492x325">, # array([[10.40789474, 7.17807018, 5.79385965, 9.02368421, ...], # [131.30789474, 120.69561404, 102.23947368, 86.09035088, ...]])) annotation_data[435] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="290x334">, # array([[64.52631579, 95.31578947, 123.26315789, 149.31578947, ...], # [15.42105263, 8.31578947, 10.21052632, 28.21052632, ...]])) annotation_data[870] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="192x128">, # array([[2.96536524, 7.55604534, 19.45780856, 33.73992443, ...], # [23.63413098, 32.13539043, 33.83564232, 8.84193955, ...]])) all_data[0] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="510x337">, # (0, array([[10.00958466, 8.18210863, 8.18210863, 10.92332268, ...], # [132.30670927, 120.42811502, 103.52396166, 90.73162939, ...]])) all_data[1] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="519x343">, # (0, array([[15.19298246, 13.71929825, 15.19298246, 19.61403509, ...], # [121.5877193, 103.90350877, 80.81578947, 64.11403509, ...]])) all_data[2] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="492x325">, # (0, array([[10.40789474, 7.17807018, 5.79385965, 9.02368421, ...], # [131.30789474, 120.69561404, 102.23947368, 86.09035088, ...]])) all_data[3] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="538x355">, # (0, array([[19.54035088, 18.57894737, 26.27017544, 38.2877193, ...], # [131.49122807, 100.24561404, 74.2877193, 49.29122807, ...]])) all_data[4] # (<pil.jpegimageplugin.jpegimagefile image mode="RGB" size="528x349">, # (0, array([[11.87982456, 11.87982456, 13.86578947, 15.35526316, ...], # [128.34649123, 105.50789474, 91.60614035, 76.71140351, ...]])) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=1.0, fontsize=14) ims = (0, 1, 2, 435, 870, 1070, 1868, 1923, 2723, 2765, 2807, 2854) for i, j in enumerate(ims, start=1): plt.subplot(2, 5, i) if len(data.target_type) == 1: if data.target_type[0] == "category": im, lab = data[j] plt.title(label=lab) elif data.target_type[0] == "annotation": im, (px, py) = data[j] plt.scatter(x=px, y=py) plt.imshow(X=im) elif len(data.target_type) == 2: if data.target_type[0] == "category": im, (lab, (px, py)) = data[j] elif data.target_type[0] == "annotation": im, ((px, py), lab) = data[j] plt.title(label=lab) plt.imshow(X=im) plt.scatter(x=px, y=py) if i == 10: break plt.tight_layout() plt.show() show_images(data=category_data, main_title="category_data") show_images(data=annotation_data, main_title="annotation_data") show_images(data=all_data, main_title="all_data") </pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></pil.jpegimageplugin.jpegimagefile></bound>
위 내용은 PyTorch의 Caltech의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python에는 두 개의 목록을 연결하는 방법이 많이 있습니다. 1. 연산자 사용 간단하지만 큰 목록에서는 비효율적입니다. 2. 효율적이지만 원래 목록을 수정하는 확장 방법을 사용하십시오. 3. 효율적이고 읽기 쉬운 = 연산자를 사용하십시오. 4. 메모리 효율적이지만 추가 가져 오기가 필요한 itertools.chain function을 사용하십시오. 5. 우아하지만 너무 복잡 할 수있는 목록 구문 분석을 사용하십시오. 선택 방법은 코드 컨텍스트 및 요구 사항을 기반으로해야합니다.

Python 목록을 병합하는 방법에는 여러 가지가 있습니다. 1. 단순하지만 큰 목록에 대한 메모리 효율적이지 않은 연산자 사용; 2. 효율적이지만 원래 목록을 수정하는 확장 방법을 사용하십시오. 3. 큰 데이터 세트에 적합한 itertools.chain을 사용하십시오. 4. 사용 * 운영자, 한 줄의 코드로 중소형 목록을 병합하십시오. 5. Numpy.concatenate를 사용하십시오. 이는 고성능 요구 사항이있는 대규모 데이터 세트 및 시나리오에 적합합니다. 6. 작은 목록에 적합하지만 비효율적 인 Append Method를 사용하십시오. 메소드를 선택할 때는 목록 크기 및 응용 프로그램 시나리오를 고려해야합니다.

CompiledLanguagesOfferSpeedSecurity, while InterpretedLanguagesProvideeaseofusEandportability

Python에서, for 루프는 반복 가능한 물체를 가로 지르는 데 사용되며, 조건이 충족 될 때 반복적으로 작업을 수행하는 데 사용됩니다. 1) 루프 예제 : 목록을 가로 지르고 요소를 인쇄하십시오. 2) 루프 예제 : 올바르게 추측 할 때까지 숫자 게임을 추측하십시오. 마스터 링 사이클 원리 및 최적화 기술은 코드 효율성과 안정성을 향상시킬 수 있습니다.

목록을 문자열로 연결하려면 Python의 join () 메소드를 사용하는 것이 최선의 선택입니다. 1) join () 메소드를 사용하여 목록 요소를 ''.join (my_list)과 같은 문자열로 연결하십시오. 2) 숫자가 포함 된 목록의 경우 연결하기 전에 맵 (str, 숫자)을 문자열로 변환하십시오. 3) ','. join (f '({fruit})'forfruitinfruits와 같은 복잡한 형식에 발전기 표현식을 사용할 수 있습니다. 4) 혼합 데이터 유형을 처리 할 때 MAP (str, mixed_list)를 사용하여 모든 요소를 문자열로 변환 할 수 있도록하십시오. 5) 큰 목록의 경우 ''.join (large_li

PythonuseSahybrideactroach, combingingcompytobytecodeandingretation.1) codeiscompiledToplatform-IndependentBecode.2) bytecodeistredbythepythonvirtonmachine, enterancingefficiency andportability.

"for"and "while"loopsare : 1) "에 대한"loopsareIdealforitertatingOverSorkNowniterations, whide2) "weekepindiTeRations.Un

Python에서는 다양한 방법을 통해 목록을 연결하고 중복 요소를 관리 할 수 있습니다. 1) 연산자를 사용하거나 ()을 사용하여 모든 중복 요소를 유지합니다. 2) 세트로 변환 한 다음 모든 중복 요소를 제거하기 위해 목록으로 돌아가지 만 원래 순서는 손실됩니다. 3) 루프 또는 목록 이해를 사용하여 세트를 결합하여 중복 요소를 제거하고 원래 순서를 유지하십시오.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

WebStorm Mac 버전
유용한 JavaScript 개발 도구

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.