찾다
백엔드 개발파이썬 튜토리얼Python의 HTML 콘텐츠에서 텍스트 추출: `HTMLParser`를 사용한 간단한 솔루션

Extracting Text from HTML Content in Python: A Simple Solution with `HTMLParser`

소개

HTML 데이터로 작업할 때 태그를 정리하고 일반 텍스트만 유지해야 하는 경우가 많습니다. 데이터 분석, 자동화 또는 단순히 콘텐츠를 읽을 수 있게 만드는 것이든 이 작업은 개발자에게 일반적입니다.

이 기사에서는 내장 Python 모듈인 HTMLParser를 사용하여 HTML에서 일반 텍스트를 추출하는 간단한 Python 클래스를 만드는 방법을 보여 드리겠습니다.


HTMLParser를 사용하는 이유는 무엇입니까?

HTMLParser는 HTML 문서를 구문 분석하고 조작할 수 있는 경량의 내장 Python 모듈입니다. BeautifulSoup과 같은 외부 라이브러리와 달리 가볍고 HTML 태그 정리와 같은 간단한 작업에 이상적입니다.


해결책: 간단한 Python 클래스

1단계: HTMLTextExtractor 클래스 생성

from html.parser import HTMLParser

class HTMLTextExtractor(HTMLParser):
    """Class for extracting plain text from HTML content."""

    def __init__(self):
        super().__init__()
        self.text = []

    def handle_data(self, data):
        self.text.append(data.strip())

    def get_text(self):
        return ''.join(self.text)

이 클래스는 세 가지 주요 작업을 수행합니다.

  1. 추출된 텍스트를 저장하기 위해 self.text 목록을 초기화합니다.
  2. handle_data 메소드를 사용하여 HTML 태그 사이에 있는 모든 일반 텍스트를 캡처합니다.
  3. get_text 메소드를 사용하여 모든 텍스트 조각을 결합합니다.

2단계: 클래스를 사용하여 텍스트 추출

클래스를 사용하여 HTML을 정리하는 방법은 다음과 같습니다.

raw_description = """
<div>
    <h1 id="Welcome-to-our-website">Welcome to our website!</h1>
    <p>We offer <strong>exceptional services</strong> for our customers.</p>
    <p>Contact us at: <a href="mailto:contact@example.com">contact@example.com</a></p>
</div>
"""

extractor = HTMLTextExtractor()
extractor.feed(raw_description)
description = extractor.get_text()

print(description)

출력:

Welcome to our website! We offer exceptional services for our customers.Contact us at: contact@example.com

속성에 대한 지원 추가

태그의 링크와 같은 추가 정보를 캡처하려면 향상된 버전의 수업을 이용하세요.

class HTMLTextExtractor(HTMLParser):
    """Class for extracting plain text and links from HTML content."""

    def __init__(self):
        super().__init__()
        self.text = []

    def handle_data(self, data):
        self.text.append(data.strip())

    def handle_starttag(self, tag, attrs):
        if tag == 'a':
            for attr, value in attrs:
                if attr == 'href':
                    self.text.append(f" (link: {value})")

    def get_text(self):
        return ''.join(self.text)

향상된 출력:

Welcome to our website!We offer exceptional services for our customers.Contact us at: contact@example.com (link: mailto:contact@example.com)

## Use Cases

- **SEO**: Clean HTML tags to analyze the plain text content of a webpage.
- **Emails**: Transform HTML emails into plain text for basic email clients.
- **Scraping**: Extract important data from web pages for analysis or storage.
- **Automated Reports**: Simplify API responses containing HTML into readable text.

이 접근 방식의 장점

  • 경량: 외부 라이브러리가 필요하지 않습니다. Python의 기본 HTMLParser를 기반으로 구축되었습니다.
  • 사용 용이성: 단순하고 재사용 가능한 클래스에 로직을 캡슐화합니다.
  • 사용자 정의 가능: 속성이나 추가 태그 데이터와 같은 특정 정보를 캡처하도록 기능을 쉽게 확장합니다.

## Limitations and Alternatives

While `HTMLParser` is simple and efficient, it has some limitations:

- **Complex HTML**: It may struggle with very complex or poorly formatted HTML documents.
- **Limited Features**: It doesn't provide advanced parsing features like CSS selectors or DOM tree manipulation.

### Alternatives

If you need more robust features, consider using these libraries:

- **BeautifulSoup**: Excellent for complex HTML parsing and manipulation.
- **lxml**: Known for its speed and support for both XML and HTML parsing.

결론

이 솔루션을 사용하면 단 몇 줄의 코드만으로 HTML에서 일반 텍스트를 쉽게 추출할 수 있습니다. 개인 프로젝트를 진행하든 전문적인 작업을 수행하든 이 접근 방식은 간단한 HTML 정리 및 분석에 적합합니다.

사용 사례에 더 복잡하거나 잘못된 HTML이 포함된 경우 BeautifulSoup 또는 lxml과 같은 라이브러리를 사용하여 기능을 강화하는 것이 좋습니다.

이 코드를 프로젝트에 사용해 보고 경험을 공유해 보세요. 즐거운 코딩하세요! ?

위 내용은 Python의 HTML 콘텐츠에서 텍스트 추출: `HTMLParser`를 사용한 간단한 솔루션의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Python의 실행 모델 : 컴파일, 해석 또는 둘 다?Python의 실행 모델 : 컴파일, 해석 또는 둘 다?May 10, 2025 am 12:04 AM

pythonisbothcompiledandlandingreted.

Python은 라인별로 실행됩니까?Python은 라인별로 실행됩니까?May 10, 2025 am 12:03 AM

Python은 엄격하게 라인 별 실행이 아니지만 통역사 메커니즘을 기반으로 최적화되고 조건부 실행입니다. 통역사는 코드를 PVM에 의해 실행 된 바이트 코드로 변환하며 상수 표현식을 사전 컴파일하거나 루프를 최적화 할 수 있습니다. 이러한 메커니즘을 이해하면 코드를 최적화하고 효율성을 향상시키는 데 도움이됩니다.

파이썬에서 두 목록을 연결하는 대안은 무엇입니까?파이썬에서 두 목록을 연결하는 대안은 무엇입니까?May 09, 2025 am 12:16 AM

Python에는 두 개의 목록을 연결하는 방법이 많이 있습니다. 1. 연산자 사용 간단하지만 큰 목록에서는 비효율적입니다. 2. 효율적이지만 원래 목록을 수정하는 확장 방법을 사용하십시오. 3. 효율적이고 읽기 쉬운 = 연산자를 사용하십시오. 4. 메모리 효율적이지만 추가 가져 오기가 필요한 itertools.chain function을 사용하십시오. 5. 우아하지만 너무 복잡 할 수있는 목록 구문 분석을 사용하십시오. 선택 방법은 코드 컨텍스트 및 요구 사항을 기반으로해야합니다.

파이썬 : 두 목록을 병합하는 효율적인 방법파이썬 : 두 목록을 병합하는 효율적인 방법May 09, 2025 am 12:15 AM

Python 목록을 병합하는 방법에는 여러 가지가 있습니다. 1. 단순하지만 큰 목록에 대한 메모리 효율적이지 않은 연산자 사용; 2. 효율적이지만 원래 목록을 수정하는 확장 방법을 사용하십시오. 3. 큰 데이터 세트에 적합한 itertools.chain을 사용하십시오. 4. 사용 * 운영자, 한 줄의 코드로 중소형 목록을 병합하십시오. 5. Numpy.concatenate를 사용하십시오. 이는 고성능 요구 사항이있는 대규모 데이터 세트 및 시나리오에 적합합니다. 6. 작은 목록에 적합하지만 비효율적 인 Append Method를 사용하십시오. 메소드를 선택할 때는 목록 크기 및 응용 프로그램 시나리오를 고려해야합니다.

편집 된 vs 해석 언어 : 장단점편집 된 vs 해석 언어 : 장단점May 09, 2025 am 12:06 AM

CompiledLanguagesOfferSpeedSecurity, while InterpretedLanguagesProvideeaseofusEandportability

파이썬 : 가장 완전한 가이드 인 루프를 위해파이썬 : 가장 완전한 가이드 인 루프를 위해May 09, 2025 am 12:05 AM

Python에서, for 루프는 반복 가능한 물체를 가로 지르는 데 사용되며, 조건이 충족 될 때 반복적으로 작업을 수행하는 데 사용됩니다. 1) 루프 예제 : 목록을 가로 지르고 요소를 인쇄하십시오. 2) 루프 예제 : 올바르게 추측 할 때까지 숫자 게임을 추측하십시오. 마스터 링 사이클 원리 및 최적화 기술은 코드 효율성과 안정성을 향상시킬 수 있습니다.

Python은 문자열로 나열됩니다Python은 문자열로 나열됩니다May 09, 2025 am 12:02 AM

목록을 문자열로 연결하려면 Python의 join () 메소드를 사용하는 것이 최선의 선택입니다. 1) join () 메소드를 사용하여 목록 요소를 ''.join (my_list)과 같은 문자열로 연결하십시오. 2) 숫자가 포함 된 목록의 경우 연결하기 전에 맵 (str, 숫자)을 문자열로 변환하십시오. 3) ','. join (f '({fruit})'forfruitinfruits와 같은 복잡한 형식에 발전기 표현식을 사용할 수 있습니다. 4) 혼합 데이터 유형을 처리 할 때 MAP (str, mixed_list)를 사용하여 모든 요소를 ​​문자열로 변환 할 수 있도록하십시오. 5) 큰 목록의 경우 ''.join (large_li

Python의 하이브리드 접근법 : 컴파일 및 해석 결합Python의 하이브리드 접근법 : 컴파일 및 해석 결합May 08, 2025 am 12:16 AM

PythonuseSahybrideactroach, combingingcompytobytecodeandingretation.1) codeiscompiledToplatform-IndependentBecode.2) bytecodeistredbythepythonvirtonmachine, enterancingefficiency andportability.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

PhpStorm 맥 버전

PhpStorm 맥 버전

최신(2018.2.1) 전문 PHP 통합 개발 도구

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Dreamweaver Mac版

Dreamweaver Mac版

시각적 웹 개발 도구