DataFrame 열에서 NaN 값 바꾸기
pandas DataFrames로 작업할 때 NaN(숫자가 아님)으로 표시되는 누락된 값을 만나는 것이 일반적입니다. 정확한 데이터 분석을 보장하고 오류를 방지하려면 이러한 값을 처리하는 것이 중요합니다. 이 문서에서는 DataFrame 열의 NaN 값을 바꾸는 방법에 대한 포괄적인 가이드를 제공합니다.
배경
다음 DataFrame에는 일부 NaN 값이 포함된 "Amount"라는 열이 포함되어 있습니다.
Date Amount 67 2012-09-30 00:00:00 65211 68 2012-09-09 00:00:00 29424 69 2012-09-16 00:00:00 29877 70 2012-09-23 00:00:00 30990 71 2012-09-30 00:00:00 61303 72 2012-09-09 00:00:00 71781 73 2012-09-16 00:00:00 NaN 74 2012-09-23 00:00:00 11072 75 2012-09-30 00:00:00 113702 76 2012-09-09 00:00:00 64731 77 2012-09-16 00:00:00 NaN
DataFrame.fillna() 또는 Series.fillna() 사용
가장 간단한 교체 방법 NaN 값은 fillna() 메서드를 사용하고 있습니다. 누락된 데이터를 채우기 위한 값이나 함수를 지정할 수 있습니다.
df['Amount'] = df['Amount'].fillna(0)
이렇게 하면 "금액" 열의 모든 NaN 값이 0으로 대체됩니다.
NaN 값 채우기 특정 값
NaN 값을 특정 값으로 채우려면 다음을 사용하세요.
df['Amount'].fillna({NaN: 100})
이것은 NaN 값을 100으로 바꿉니다.
다른 열을 기준으로 NaN 값 채우기
다른 열의 값을 기준으로 NaN 값을 채울 수도 있습니다.
df['Amount'].fillna(df['Amount'].mean())
이렇게 하면 NaN 값을 "금액" 열의 평균값으로 채웁니다.
위 내용은 Pandas DataFrame 열에서 NaN 값을 바꾸는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Tomergelistsinpython, youcanusethe operator, extendmethod, listcomprehension, oritertools.chain, 각각은 각각의 지위를 불러 일으킨다

Python 3에서는 다양한 방법을 통해 두 개의 목록을 연결할 수 있습니다. 1) 작은 목록에 적합하지만 큰 목록에는 비효율적입니다. 2) 메모리 효율이 높지만 원래 목록을 수정하는 큰 목록에 적합한 확장 방법을 사용합니다. 3) 원래 목록을 수정하지 않고 여러 목록을 병합하는 데 적합한 * 운영자 사용; 4) 메모리 효율이 높은 대형 데이터 세트에 적합한 itertools.chain을 사용하십시오.

join () 메소드를 사용하는 것은 Python의 목록에서 문자열을 연결하는 가장 효율적인 방법입니다. 1) join () 메소드를 사용하여 효율적이고 읽기 쉽습니다. 2)주기는 큰 목록에 비효율적으로 운영자를 사용합니다. 3) List Comprehension과 Join ()의 조합은 변환이 필요한 시나리오에 적합합니다. 4) READE () 방법은 다른 유형의 감소에 적합하지만 문자열 연결에 비효율적입니다. 완전한 문장은 끝납니다.

pythonexecutionissprocessoftransformingpythoncodeintoExecutableInstructions.1) the -interreadsTheCode, ConvertingItintoByTecode, thethepythonVirtualMachine (pvm)을 실행합니다

Python의 주요 특징은 다음과 같습니다. 1. 구문은 간결하고 이해하기 쉽고 초보자에게 적합합니다. 2. 개발 속도 향상, 동적 유형 시스템; 3. 여러 작업을 지원하는 풍부한 표준 라이브러리; 4. 광범위한 지원을 제공하는 강력한 지역 사회와 생태계; 5. 스크립팅 및 빠른 프로토 타이핑에 적합한 해석; 6. 다양한 프로그래밍 스타일에 적합한 다중-파라 디그 지원.

Python은 해석 된 언어이지만 편집 프로세스도 포함됩니다. 1) 파이썬 코드는 먼저 바이트 코드로 컴파일됩니다. 2) 바이트 코드는 Python Virtual Machine에 의해 해석되고 실행됩니다. 3)이 하이브리드 메커니즘은 파이썬이 유연하고 효율적이지만 완전히 편집 된 언어만큼 빠르지는 않습니다.

USEAFORLOOPHENTERATINGOVERASERASERASPECIFICNUMBEROFTIMES; USEAWHILLOOPWHENTINUTIMONDITINISMET.FORLOOPSAREIDEALFORKNOWNSEDINGENCENCENS, WHILEWHILELOOPSSUITSITUATIONS WITHERMINGEDERITERATIONS.

Pythonloopscanleadtoerrors likeinfiniteloops, modifyinglistsdizeration, off-by-by-byerrors, zero-indexingissues, andnestedloopineficiencies.toavoidthese : 1) aing'i


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

Dreamweaver Mac版
시각적 웹 개발 도구

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!