Ubuntu
Ubuntu 18에서 Numpy 어레이에 상당한 메모리를 할당할 때 사용자에게 다음과 같은 문제가 발생할 수 있습니다. "모양과 데이터 유형이 있는 배열을 할당할 수 없습니다."와 같은 오류가 발생합니다. 이 문제는 메모리가 충분함에도 불구하고 발생하며 MacOS에서는 관찰되지 않습니다.
근본 원인
이 문제는 Ubuntu의 기본 오버커밋 모드(0)에서 발생합니다. . 이 모드에서 커널은 물리적 페이지의 오버커밋을 방지하기 위해 메모리 할당을 제한합니다. 이는 약 282GB가 필요한 지정된 것과 같이 크기가 큰 배열에 메모리를 할당할 때 문제가 됩니다.
솔루션
배열을 성공적으로 할당하려면 다음을 수행하세요. 오버커밋 모드를 1로 변경합니다. 이렇게 하면 "항상 오버커밋" 모드가 효과적으로 활성화되어 실제 메모리가 있는지 여부에 관계없이 할당이 가능해집니다. 충분합니다.
루트로 오버커밋 모드를 1로 설정하려면 다음 명령을 실행합니다.
$ echo 1 > /proc/sys/vm/overcommit_memory
Sparse Array 고려 사항
이것은 솔루션을 사용하면 희박하거나 대부분 비어 있는 배열에 공간을 할당할 수 있습니다. 그러나 데이터가 존재하는 물리적 페이지를 할당하려면 명시적으로 배열에 써야 한다는 점에 유의하는 것이 중요합니다. 이는 효율적인 메모리 활용에 매우 중요할 수 있습니다.
위 내용은 메모리가 충분함에도 불구하고 Ubuntu에서 대규모 NumPy 배열을 할당할 수 없는 이유는 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

이 튜토리얼은 Python을 사용하여 Zipf의 법칙의 통계 개념을 처리하는 방법을 보여주고 법을 처리 할 때 Python의 읽기 및 대형 텍스트 파일을 정렬하는 효율성을 보여줍니다. ZIPF 분포라는 용어가 무엇을 의미하는지 궁금 할 것입니다. 이 용어를 이해하려면 먼저 Zipf의 법칙을 정의해야합니다. 걱정하지 마세요. 지침을 단순화하려고 노력할 것입니다. Zipf의 법칙 Zipf의 법칙은 단순히 : 큰 자연어 코퍼스에서 가장 자주 발생하는 단어는 두 번째 빈번한 단어, 세 번째 빈번한 단어보다 세 번, 네 번째 빈번한 단어 등 4 배나 자주 발생합니다. 예를 살펴 보겠습니다. 미국 영어로 브라운 코퍼스를 보면 가장 빈번한 단어는 "TH입니다.

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

시끄러운 이미지를 다루는 것은 특히 휴대폰 또는 저해상도 카메라 사진에서 일반적인 문제입니다. 이 튜토리얼은 OpenCV를 사용 하여이 문제를 해결하기 위해 Python의 이미지 필터링 기술을 탐구합니다. 이미지 필터링 : 강력한 도구 이미지 필터

PDF 파일은 운영 체제, 읽기 장치 및 소프트웨어 전체에서 일관된 콘텐츠 및 레이아웃과 함께 크로스 플랫폼 호환성에 인기가 있습니다. 그러나 Python Processing Plain Text 파일과 달리 PDF 파일은 더 복잡한 구조를 가진 이진 파일이며 글꼴, 색상 및 이미지와 같은 요소를 포함합니다. 다행히도 Python의 외부 모듈로 PDF 파일을 처리하는 것은 어렵지 않습니다. 이 기사는 PYPDF2 모듈을 사용하여 PDF 파일을 열고 페이지를 인쇄하고 텍스트를 추출하는 방법을 보여줍니다. PDF 파일의 생성 및 편집에 대해서는 저의 다른 튜토리얼을 참조하십시오. 준비 핵심은 외부 모듈 PYPDF2를 사용하는 데 있습니다. 먼저 PIP를 사용하여 설치하십시오. PIP는 p입니다

이 튜토리얼은 Redis 캐싱을 활용하여 특히 Django 프레임 워크 내에서 Python 응용 프로그램의 성능을 향상시키는 방법을 보여줍니다. 우리는 Redis 설치, Django 구성 및 성능 비교를 다루어 Bene을 강조합니다.

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

이 튜토리얼은 Python 3에서 사용자 정의 파이프 라인 데이터 구조를 작성하여 클래스 및 작업자 과부하를 활용하여 향상된 기능을 보여줍니다. 파이프 라인의 유연성은 일련의 기능을 데이터 세트, GE에 적용하는 능력에 있습니다.

데이터 과학 및 처리가 가장 좋아하는 Python은 고성능 컴퓨팅을위한 풍부한 생태계를 제공합니다. 그러나 Python의 병렬 프로그래밍은 독특한 과제를 제시합니다. 이 튜토리얼은 이러한 과제를 탐구하며 전 세계 해석에 중점을 둡니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

WebStorm Mac 버전
유용한 JavaScript 개발 도구

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!
