찾다
백엔드 개발파이썬 튜토리얼Pandas `map`, `applymap` 또는 `apply`를 언제 사용합니까?

When to Use Pandas `map`, `applymap`, or `apply`?

Pandas에서 map, applymap, Apply 중에서 선택

Pandas DataFrames를 사용하다 보면 데이터에 함수를 적용해야 하는 경우가 많습니다. 다양한 방법으로. 벡터화에 일반적으로 사용되는 세 가지 방법은 map, applymap 및 apply입니다. 각각은 고유한 목적과 용도를 가지고 있습니다.

Map

map은 Series 객체에 특정한 방법이며 Series의 각 요소에 기능을 적용합니다. 단일 값을 입력으로 사용하고 단일 값을 반환하는 함수가 필요합니다.

:

import pandas as pd

# Create a Series
series = pd.Series([1, 2, 3, 4, 5])

# Apply a function to each element
def square(x):
    return x**2

# Apply the function to the series using map
squared_series = series.map(square)

print(squared_series)

출력:

0    1
1    4
2    9
3   16
4   25
dtype: int64

Applymap

applymap은 DataFrame의 각 요소에 함수를 적용하여 요소별로 작업을 수행합니다. map과 마찬가지로 단일 값을 입력으로 사용하고 단일 값을 반환하는 함수를 기대합니다.

:

# Create a DataFrame
df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})

# Apply a function to each element of the DataFrame
def format_number(x):
    return "{:.2f}".format(x)

# Apply the function to the DataFrame using applymap
formatted_df = df.applymap(format_number)

print(formatted_df)

출력:

   a  b
0  1.00  4.00
1  2.00  5.00
2  3.00  6.00

신청

신청 축 매개변수에 따라 DataFrame의 각 행 또는 열에 대한 함수입니다. map 및 applymap보다 더 다양하며 여러 값을 입력으로 전달해야 하는 함수를 처리할 수 있습니다.

:

# Apply a function to each row of the DataFrame
def get_max_min_diff(row):
    return row.max() - row.min()

max_min_diff = df.apply(get_max_min_diff, axis=1)

print(max_min_diff)

출력:

0    3.00
1    3.00
2    3.00
dtype: float64

사용법 요약

  • map: 시리즈에 요소별 함수 적용
  • applymap: DataFrame에 요소별 함수 적용
  • 적용: 행/열별 함수 적용 유연한 입력/출력 처리를 통해 DataFrame으로

위 내용은 Pandas `map`, `applymap` 또는 `apply`를 언제 사용합니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
목록과 배열 사이의 선택은 큰 데이터 세트를 다루는 파이썬 응용 프로그램의 전반적인 성능에 어떤 영향을 미칩니 까?목록과 배열 사이의 선택은 큰 데이터 세트를 다루는 파이썬 응용 프로그램의 전반적인 성능에 어떤 영향을 미칩니 까?May 03, 2025 am 12:11 AM

forhandlinglargedatasetsinpython, usenumpyarraysforbetterperformance.1) numpyarraysarememory-effic andfasterfornumericaloperations.2) leveragevectorization foredtimecomplexity.4) managemoryusage withorfications data

Python의 목록 대 배열에 대한 메모리가 어떻게 할당되는지 설명하십시오.Python의 목록 대 배열에 대한 메모리가 어떻게 할당되는지 설명하십시오.May 03, 2025 am 12:10 AM

inpython, listsusedyammoryAllocation과 함께 할당하고, whilempyarraysallocatefixedMemory.1) listsAllocatemememorythanneedInitiality.

파이썬 어레이에서 요소의 데이터 유형을 어떻게 지정합니까?파이썬 어레이에서 요소의 데이터 유형을 어떻게 지정합니까?May 03, 2025 am 12:06 AM

Inpython, youcansspecthedatatypeyfelemeremodelerernspant.1) usenpynernrump.1) usenpynerp.dloatp.ploatm64, 포모 선례 전분자.

Numpy 란 무엇이며 Python의 수치 컴퓨팅에 중요한 이유는 무엇입니까?Numpy 란 무엇이며 Python의 수치 컴퓨팅에 중요한 이유는 무엇입니까?May 03, 2025 am 12:03 AM

numpyissentialfornumericalcomputinginpythonduetoitsspeed, memory-efficiency 및 comperniveMathematicaticaltions

'연속 메모리 할당'의 개념과 배열의 중요성에 대해 토론하십시오.'연속 메모리 할당'의 개념과 배열의 중요성에 대해 토론하십시오.May 03, 2025 am 12:01 AM

contiguousUousUousUlorAllocationScrucialForraysbecauseItAllowsOfficationAndFastElementAccess.1) ItenableSconstantTimeAccess, o (1), DuetodirectAddressCalculation.2) Itimprovesceeffiency theMultipleementFetchespercacheline.3) Itsimplififiesmomorym

파이썬 목록을 어떻게 슬라이스합니까?파이썬 목록을 어떻게 슬라이스합니까?May 02, 2025 am 12:14 AM

slicepaythonlistisdoneusingthesyntaxlist [start : step : step] .here'showitworks : 1) startistheindexofthefirstelementtoinclude.2) stopistheindexofthefirstelemement.3) stepisincrementbetwetweentractionsoftortionsoflists

Numpy Array에서 수행 할 수있는 일반적인 작업은 무엇입니까?Numpy Array에서 수행 할 수있는 일반적인 작업은 무엇입니까?May 02, 2025 am 12:09 AM

NumpyAllowsForVariousOperationsOnArrays : 1) BasicArithmeticLikeadDition, Subtraction, A 및 Division; 2) AdvancedOperationsSuchasmatrixmultiplication; 3) extrayintondsfordatamanipulation; 5) Ag

파이썬으로 데이터 분석에 어레이가 어떻게 사용됩니까?파이썬으로 데이터 분석에 어레이가 어떻게 사용됩니까?May 02, 2025 am 12:09 AM

Arraysinpython, 특히 Stroughnumpyandpandas, areestentialfordataanalysis, setingspeedandefficiency

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 Linux 새 버전

SublimeText3 Linux 새 버전

SublimeText3 Linux 최신 버전

맨티스BT

맨티스BT

Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.