datetime, Timestamp 및 datetime 간 변환64
Python에서 시간 표현을 작업할 때 datetime, 타임스탬프 및 datetime64. 효과적인 날짜 및 시간 작업을 위해서는 이러한 유형 간의 변환 방법을 이해하는 것이 중요합니다.
datetime, Timestamp 및 datetime64의 인스턴스를 생성하는 아래 스니펫을 고려해 보겠습니다.
import datetime import numpy as np import pandas as pd dt = datetime.datetime(2012, 5, 1) # A strange way to extract a Timestamp object, there's surely a better way? ts = pd.DatetimeIndex([dt])[0] dt64 = np.datetime64(dt)
타임스탬프의 날짜/시간은 to_datetime 메서드를 사용하여 간단합니다.
ts.to_datetime()
그러나 numpy.datetime64(dt64)에서 날짜/시간 또는 타임스탬프를 추출하는 것은 약간 까다로울 수 있습니다. dt64를 타임스탬프로 변환하려면 pd.Timestamp 생성자를 사용하면 됩니다.
pd.Timestamp(dt64)
다음 다이어그램을 참조하면 이 변환 프로세스가 더 쉬워집니다.
[사이의 변환을 보여주는 다이어그램 이미지 날짜시간, 타임스탬프 및 날짜시간64]
위 내용은 Python의 `datetime`, `Timestamp` 및 `datetime64` 간을 변환하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

ArraysareGenerallyMorememory- 효율적 인 thanlistsortingnumericaldataduetotheirfixed-sizenatureanddirectmemoryAccess.1) ArraysStoreElementsInacontiguousBlock, retoneverHead-fompointerSormetAdata.2) 목록, 종종 implementededymamamicArraysorlinkedStruct

ToconvertapyThonlisttoAnarray, usethearraymodule : 1) importThearrayModule, 2) CreateAlist, 3) Usearray (typecode, list) toconvertit, thetypecodelike'i'forintegers

Python 목록은 다양한 유형의 데이터를 저장할 수 있습니다. 예제 목록에는 정수, 문자열, 부동 소수점 번호, 부울, 중첩 목록 및 사전이 포함되어 있습니다. 목록 유연성은 데이터 처리 및 프로토 타이핑에서 가치가 있지만 코드의 가독성과 유지 관리를 보장하기 위해주의해서 사용해야합니다.

PythondoesnothaveBuilt-inarrays; Usethearraymoduleformory- 효율적인 호모 유전자 도자기, whilistsareversartileformixedDatatypes.arraysareefficiTiveDatasetsophesAty, whereferfiblityAndareAsiErtouseFormixOrdorSmallerSmallerSmallerSMATASETS.

themoscommonLyusedModuleForraySinisThonisNumpy.1) NumpyProvideseficileditionToolsForArrayOperations, IdealFornumericalData.2) ArrayscanBecreatedUsingnp.array () for1dand2dsuctures.3) Numpyexcelsinlement-wiseOperations Numpyexcelscelslikemea

toAppendElementStoapyThonList, usetHeappend () MethodForsingleElements, extend () formultipleements, andinsert () forspecificpositions.1) useappend () foraddingOneElementatateend.2) usextend () toaddmultipleementsefficially

To TeCreateAtheThonList, usequareBrackets [] andseparateItemswithCommas.1) ListSaredynamicandCanholdMixedDatAtatypes.2) useappend (), remove () 및 SlicingFormAnipulation.3) listlisteforences;) ORSL

금융, 과학 연구, 의료 및 AI 분야에서 수치 데이터를 효율적으로 저장하고 처리하는 것이 중요합니다. 1) 금융에서 메모리 매핑 파일과 Numpy 라이브러리를 사용하면 데이터 처리 속도가 크게 향상 될 수 있습니다. 2) 과학 연구 분야에서 HDF5 파일은 데이터 저장 및 검색에 최적화됩니다. 3) 의료에서 인덱싱 및 파티셔닝과 같은 데이터베이스 최적화 기술은 데이터 쿼리 성능을 향상시킵니다. 4) AI에서 데이터 샤딩 및 분산 교육은 모델 교육을 가속화합니다. 올바른 도구와 기술을 선택하고 스토리지 및 처리 속도 간의 트레이드 오프를 측정함으로써 시스템 성능 및 확장 성을 크게 향상시킬 수 있습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.