복사하지 않고 C에서 압축된 컨테이너 정렬
사본을 만들지 않고 여러 벡터를 동시에 정렬하는 것은 독특한 과제입니다. 기존 솔루션에서는 데이터를 튜플이나 구조체로 복제해야 하는 경우가 많으며 이는 비효율적입니다. 이 질문은 복사 없이 정렬을 수행하기 위해 C 라이브러리의 기능을 활용하는 우아한 솔루션을 탐구합니다.
문제:
목표는 잠금 단계에서 여러 벡터를 정렬하는 것입니다. , 해당 요소가 쌍을 유지하도록 보장합니다. 벡터를 복사하는 것은 중복되고 바람직하지 않습니다.
실패한 시도:
boost::zip_iterator 및 Boost::range::algorithm::sort는 유망해 보이지만 읽기 전용 및 비임의 액세스 거부 iterators.
답변:
interjay가 제안한 대로 "tupleit.hh" 헤더에서 사용자 정의 TupleIteratorType을 사용하면 내장된 반복자의 제한을 우회할 수 있습니다. 반복자. 이를 통해 압축된 벡터에서 직접 작동하는 사용자 정의 정렬 기능을 정의할 수 있습니다.
여기 데모가 있습니다.
#include "tupleit.hh" #include <vector> #include <iostream> #include <boost> #include <boost> #include <boost> template <typename... t> auto zip(T&... containers) -> boost::iterator_range<decltype> { return boost::make_iterator_range(iterators::makeTupleIterator(std::begin(containers)...), iterators::makeTupleIterator(std::end(containers)...)); } int main() { typedef boost::tuple<int> tup_t; std::vector<int> a = { 1, 2, 3, 4 }; std::vector<double> b = { 11, 22, 33, 44 }; std::vector<long> c = { 111, 222, 333, 444 }; auto print = [](tup_t t){ std::cout () () () () > j.get(); }); for ( auto tup : zip(a, b, c) ) print(tup); return 0; }</long></double></int></int></decltype></typename...></boost></boost></boost></iostream></vector>
이 코드는 벡터를 복사하지 않고 제자리에서 정렬합니다. 사용자 정의 반복자와 "정렬" 기능을 사용하면 필요한 모든 순열이 처리됩니다.
향후 확장:
현재 솔루션은 시퀀스 컨테이너에 적합합니다. 목록과 같은 정렬 가능한 컨테이너로 확장하려면 양방향 반복자를 지원하는 정렬 알고리즘과 함께 RandomAccess 및 양방향 TupleIterator가 필요합니다.
위 내용은 데이터를 복사하지 않고 C에서 여러 벡터를 어떻게 정렬할 수 있나요?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

C에서 다형성을 마스터하면 코드 유연성과 유지 관리가 크게 향상 될 수 있습니다. 1) 다형성은 다른 유형의 물체를 동일한 기본 유형의 물체로 취급 할 수 있도록합니다. 2) 상속 및 가상 기능을 통해 런타임 다형성을 구현합니다. 3) 다형성은 기존 클래스를 수정하지 않고 코드 확장을 지원합니다. 4) CRTP를 사용하여 컴파일 타임 다형성을 구현하면 성능이 향상 될 수 있습니다. 5) 스마트 포인터는 자원 관리를 돕습니다. 6) 기본 클래스에는 가상 파괴자가 있어야합니다. 7) 성능 최적화는 먼저 코드 분석이 필요합니다.

C Destructorsprovideprepisecontroloverresourcemanagement, whilegarbagecollectorsautomatememormanorymanagementbutintroction.c 파괴자 : 1) 허용 customcleanupactionswhenobjectsaredestroyed, 2) ggooutofscop을 방출하는 것은 즉시 방출

1) Pugixml 또는 TinyXML 라이브러리를 사용하여 XML 파일을 구문 분석하고 생성하는 데 도움이 될 수 있습니다. 2) 구문 분석을위한 DOM 또는 SAX 방법을 선택하고, 3) 중첩 노드 및 다단계 속성을 처리, 4) 디버깅 기술 및 모범 사례를 사용하여 성능을 최적화하십시오.

XML은 데이터, 특히 구성 파일, 데이터 저장 및 네트워크 통신에서 데이터를 구조화하는 편리한 방법을 제공하기 때문에 C에서 사용됩니다. 1) TinyXML, PugixML, RapidXML과 같은 적절한 라이브러리를 선택하고 프로젝트 요구에 따라 결정하십시오. 2) XML 파싱 및 생성의 두 가지 방법을 이해하십시오. DOM은 자주 액세스 및 수정에 적합하며 SAX는 큰 파일 또는 스트리밍 데이터에 적합합니다. 3) 성능을 최적화 할 때 TinyXML은 작은 파일에 적합하며 PugixML은 메모리와 속도에서 잘 작동하며 RapidXML은 큰 파일을 처리하는 데 탁월합니다.

C#과 C의 주요 차이점은 메모리 관리, 다형성 구현 및 성능 최적화입니다. 1) C#은 쓰레기 수집기를 사용하여 메모리를 자동으로 관리하는 반면 C는 수동으로 관리해야합니다. 2) C#은 인터페이스 및 가상 방법을 통해 다형성을 실현하고 C는 가상 함수와 순수한 가상 함수를 사용합니다. 3) C#의 성능 최적화는 구조 및 병렬 프로그래밍에 따라 다르며 C는 인라인 함수 및 멀티 스레딩을 통해 구현됩니다.

DOM 및 SAX 방법은 XML 데이터를 C에서 구문 분석하는 데 사용될 수 있습니다. 1) DOM 파싱은 XML로드를 메모리로, 작은 파일에 적합하지만 많은 메모리를 차지할 수 있습니다. 2) Sax Parsing은 이벤트 중심이며 큰 파일에 적합하지만 무작위로 액세스 할 수는 없습니다. 올바른 방법을 선택하고 코드를 최적화하면 효율성이 향상 될 수 있습니다.

C는 고성능과 유연성으로 인해 게임 개발, 임베디드 시스템, 금융 거래 및 과학 컴퓨팅 분야에서 널리 사용됩니다. 1) 게임 개발에서 C는 효율적인 그래픽 렌더링 및 실시간 컴퓨팅에 사용됩니다. 2) 임베디드 시스템에서 C의 메모리 관리 및 하드웨어 제어 기능이 첫 번째 선택이됩니다. 3) 금융 거래 분야에서 C의 고성능은 실시간 컴퓨팅의 요구를 충족시킵니다. 4) 과학 컴퓨팅에서 C의 효율적인 알고리즘 구현 및 데이터 처리 기능이 완전히 반영됩니다.

C는 죽지 않았지만 많은 주요 영역에서 번성했습니다 : 1) 게임 개발, 2) 시스템 프로그래밍, 3) 고성능 컴퓨팅, 4) 브라우저 및 네트워크 응용 프로그램, C는 여전히 유명한 활력 및 응용 시나리오를 보여줍니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

Dreamweaver Mac版
시각적 웹 개발 도구

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!