ON DUPLICATE KEY UPDATE 수수께끼: 자동 증분 이상
INSERT 문에서 ON DUPLICATE KEY UPDATE 절을 사용할 때 다음과 같은 문제가 발생할 수 있습니다. 자동 증가 값으로 인해 예기치 않은 동작이 발생합니다. ON DUPLICATE KEY 절을 트리거하는 새 행을 삽입하면 자동 증가 값이 특수하게 증가할 수 있습니다. 이 글에서는 원인을 파헤치고 해결책을 제시합니다.
메커니즘 이해
MySQL에 설명된 대로 ON DUPLICATE KEY UPDATE를 지정하면 UNIQUE 인덱스 또는 PRIMARY KEY는 기존 행의 UPDATE를 트리거합니다. 이 작업은 UPDATE 문과 유사합니다.
그러나 InnoDB 테이블에서 자동 증가 열을 사용할 때 중요한 차이점이 발생합니다. 자동 증가 열을 자동으로 증가시키는 INSERT 문과 달리 UPDATE 문은 해당 값에 영향을 주지 않습니다.
ON DUPLICATE KEY의 의미
이 예에서 MySQL은 INSERT를 시도합니다. 자동 증가 값을 증가시키는 작업을 먼저 수행합니다. 이어서 중복 키가 감지되고 UPDATE가 발생합니다. 단, INSERT 시 설정된 자동 증가 값은 업데이트되지 않습니다. 이로 인해 자동 증가 열에 일관되지 않은 증가가 발생합니다.
자동 증가에 대한 의존
시퀀스를 유지하기 위해 자동 증가 값에 의존하지 않는 것이 중요합니다. MySQL 자동 증가 값은 위에서 설명한 메커니즘으로 인해 차이가 발생할 수 있습니다. 순차 값이 필요한 애플리케이션의 경우 트리거를 사용하여 잠금 및 번호 다시 매기기와 관련된 보다 노동 집약적인 접근 방식이 필요합니다.
대체 솔루션
바람직한 솔루션은 증분을 계산하고 출력하는 것입니다. 가치. 이렇게 하면 잠금 및 번호 다시 매기기와 관련된 복잡성 및 성능 오버헤드 없이 순차 값이 보장됩니다.
위 내용은 ON DUPLICATE KEY UPDATE로 인해 MySQL의 자동 증가 값이 비정상적으로 증가하는 이유는 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

InnoDB는 Redologs 및 Undologs를 사용하여 데이터 일관성과 신뢰성을 보장합니다. 1. Redologs는 사고 복구 및 거래 지속성을 보장하기 위해 데이터 페이지 수정을 기록합니다. 2. 결점은 원래 데이터 값을 기록하고 트랜잭션 롤백 및 MVCC를 지원합니다.

설명 명령에 대한 주요 메트릭에는 유형, 키, 행 및 추가가 포함됩니다. 1) 유형은 쿼리의 액세스 유형을 반영합니다. 값이 높을수록 Const와 같은 효율이 높아집니다. 2) 키는 사용 된 인덱스를 표시하고 NULL은 인덱스가 없음을 나타냅니다. 3) 행은 스캔 한 행의 수를 추정하여 쿼리 성능에 영향을 미칩니다. 4) Extra는 최적화해야한다는 Filesort 프롬프트 사용과 같은 추가 정보를 제공합니다.

Temporary를 사용하면 MySQL 쿼리에 임시 테이블을 생성해야 할 필요성이 있으며, 이는 별개의, 그룹 비 또는 비 인덱스 열을 사용하여 순서대로 발견됩니다. 인덱스 발생을 피하고 쿼리를 다시 작성하고 쿼리 성능을 향상시킬 수 있습니다. 구체적으로, 설명 출력에 사용되는 경우, MySQL은 쿼리를 처리하기 위해 임시 테이블을 만들어야 함을 의미합니다. 이것은 일반적으로 다음과 같은 경우에 발생합니다. 1) 별개 또는 그룹을 사용할 때 중복 제거 또는 그룹화; 2) OrderBy가 비 인덱스 열이 포함되어있을 때 정렬하십시오. 3) 복잡한 하위 쿼리 또는 조인 작업을 사용하십시오. 최적화 방법은 다음과 같습니다. 1) Orderby 및 GroupB

MySQL/InnoDB는 4 개의 트랜잭션 격리 수준을 지원합니다. Readuncommitted, ReadCommitted, ReturableRead 및 Serializable. 1. READUCMITTED는 커밋되지 않은 데이터를 읽을 수 있으므로 더러운 판독 값을 유발할 수 있습니다. 2. ReadCommitted는 더러운 읽기를 피하지만 반복 할 수없는 독서가 발생할 수 있습니다. 3. RepeatableRead는 더러운 읽기와 반복 할 수없는 독서를 피하는 기본 레벨이지만 팬텀 독서가 발생할 수 있습니다. 4. 직렬화 가능한 것은 모든 동시성 문제를 피하지만 동시성을 줄입니다. 적절한 격리 수준을 선택하려면 균형 잡힌 데이터 일관성 및 성능 요구 사항이 필요합니다.

MySQL은 웹 응용 프로그램 및 컨텐츠 관리 시스템에 적합하며 오픈 소스, 고성능 및 사용 편의성에 인기가 있습니다. 1) PostgreSQL과 비교하여 MySQL은 간단한 쿼리 및 높은 동시 읽기 작업에서 더 잘 수행합니다. 2) Oracle과 비교할 때 MySQL은 오픈 소스와 저렴한 비용으로 인해 중소 기업에서 더 인기가 있습니다. 3) Microsoft SQL Server와 비교하여 MySQL은 크로스 플랫폼 응용 프로그램에 더 적합합니다. 4) MongoDB와 달리 MySQL은 구조화 된 데이터 및 트랜잭션 처리에 더 적합합니다.

MySQL Index Cardinality는 쿼리 성능에 중대한 영향을 미칩니다. 1. 높은 카디널리티 인덱스는 데이터 범위를보다 효과적으로 좁히고 쿼리 효율성을 향상시킬 수 있습니다. 2. 낮은 카디널리티 인덱스는 전체 테이블 스캔으로 이어질 수 있으며 쿼리 성능을 줄일 수 있습니다. 3. 관절 지수에서는 쿼리를 최적화하기 위해 높은 카디널리티 시퀀스를 앞에 놓아야합니다.

MySQL 학습 경로에는 기본 지식, 핵심 개념, 사용 예제 및 최적화 기술이 포함됩니다. 1) 테이블, 행, 열 및 SQL 쿼리와 같은 기본 개념을 이해합니다. 2) MySQL의 정의, 작업 원칙 및 장점을 배우십시오. 3) 인덱스 및 저장 절차와 같은 기본 CRUD 작업 및 고급 사용량을 마스터합니다. 4) 인덱스의 합리적 사용 및 최적화 쿼리와 같은 일반적인 오류 디버깅 및 성능 최적화 제안에 익숙합니다. 이 단계를 통해 MySQL의 사용 및 최적화를 완전히 파악할 수 있습니다.

MySQL의 실제 응용 프로그램에는 기본 데이터베이스 설계 및 복잡한 쿼리 최적화가 포함됩니다. 1) 기본 사용 : 사용자 정보 삽입, 쿼리, 업데이트 및 삭제와 같은 사용자 데이터를 저장하고 관리하는 데 사용됩니다. 2) 고급 사용 : 전자 상거래 플랫폼의 주문 및 재고 관리와 같은 복잡한 비즈니스 로직을 처리합니다. 3) 성능 최적화 : 인덱스, 파티션 테이블 및 쿼리 캐시를 사용하여 합리적으로 성능을 향상시킵니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

드림위버 CS6
시각적 웹 개발 도구

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음
