그룹화 작업을 위한 Pandas의 '크기'와 '개수' 구별
Pandas의 groupby() 기능을 사용할 때 '크기'와 '개수'를 구별합니다. 이러한 함수는 그룹 개수에 적용될 때 유사한 결과를 생성하는 것처럼 보이지만 데이터 분석에 영향을 줄 수 있는 미묘한 차이가 있습니다.
'count' 함수는 특히 그룹에서 Null이 아닌 값의 개수를 계산합니다. 즉, 그룹에 누락된 값(NaN 또는 None)이 있으면 개수에서 제외됩니다. 이 동작을 통해 그룹 개수를 계산할 때 유효한 관측값만 고려할 수 있습니다.
반면 '크기' 함수는 누락된 값이 있는 관측값을 포함하여 그룹의 총 관측값 수를 계산합니다. 즉, 유효한 관찰과 유효하지 않은 관찰이 모두 계산되어 그룹 규모에 대한 더 넓은 그림을 제공합니다.
이 차이점을 설명하기 위해 다음 예를 고려하십시오.
df = pd.DataFrame({'a': [0, 0, 1, 2, 2, 2], 'b': [1, 2, 3, 4, np.NaN, 4], 'c': np.random.randn(6)}) print(df.groupby(['a'])['b'].count()) print(df.groupby(['a'])['b'].size())
출력은 다음과 같습니다. :
a 0 2 1 1 2 2 Name: b, dtype: int64 a 0 2 1 1 2 3 dtype: int64
보시다시피 'count' 함수는 'a=2' 그룹의 NaN 값을 제외하는 반면, '크기' 기능이 포함되어 있습니다. 데이터 세트에 누락된 데이터가 포함되어 있고 분석을 위해 이를 적절하게 처리해야 하는 경우 이러한 구별은 매우 중요합니다.
위 내용은 Pandas GroupBy: 'size'와 'count'를 언제 사용해야 합니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

numpyarraysarebetterfornumericaloperations 및 multi-dimensionaldata, mumemer-efficientArrays

numpyarraysarebetterforheavynumericalcomputing, whilearraymoduleisiMoresuily-sportainedprojectswithsimpledatatypes.1) numpyarraysofferversatively 및 formanceforgedatasets 및 complexoperations.2) Thearraymoduleisweighit 및 ep

ctypesallowscreatingandmanipulatingC-stylearraysinPython.1)UsectypestointerfacewithClibrariesforperformance.2)CreateC-stylearraysfornumericalcomputations.3)PassarraystoCfunctionsforefficientoperations.However,becautiousofmemorymanagement,performanceo

Inpython, "목록", isaversatile, mutablesequencetatcanholdmixeddatattypes, whilean "array"isamorememory-efficed, homogeneouseceenceRequiringElements ofthesAmeType.1) ListSareIdeAldiversEdatastorageandmanipulationDuetoIrflexibrieth

PythonlistsAndarraysareBotheBotheBothebothable.1) ListSareflexibleandsupporterogenousDatabutarabestemory-efficient.2) Arraysaremorememory-efforhomogeneousdatabutlessverstile, CorrectTypecodeusagetoavoidercer가 필요합니다.

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python 또는 C를 선택하는 것은 프로젝트 요구 사항에 따라 다릅니다. 1) 빠른 개발, 데이터 처리 및 프로토 타입 설계가 필요한 경우 Python을 선택하십시오. 2) 고성능, 낮은 대기 시간 및 근접 하드웨어 제어가 필요한 경우 C를 선택하십시오.

매일 2 시간의 파이썬 학습을 투자하면 프로그래밍 기술을 효과적으로 향상시킬 수 있습니다. 1. 새로운 지식 배우기 : 문서를 읽거나 자습서를 시청하십시오. 2. 연습 : 코드를 작성하고 완전한 연습을합니다. 3. 검토 : 배운 내용을 통합하십시오. 4. 프로젝트 실무 : 실제 프로젝트에서 배운 것을 적용하십시오. 이러한 구조화 된 학습 계획은 파이썬을 체계적으로 마스터하고 경력 목표를 달성하는 데 도움이 될 수 있습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

Dreamweaver Mac版
시각적 웹 개발 도구

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.
