막대 차트에 그룹 레이블 추가
Matplotlib에서 막대 차트에 그룹 레이블을 추가하면 가독성이 향상되고 그래프의 명확한 시각적 표현을 제공할 수 있습니다. 데이터 구조. 이를 달성하기 위한 사용자 정의 솔루션은 다음과 같습니다.
# Custom function to group data for bar chart def mk_groups(data): newdata = data.items() thisgroup = [] groups = [] for key, value in newdata: newgroups = mk_groups(value) if newgroups is None: thisgroup.append((key, value)) else: thisgroup.append((key, len(newgroups[-1]))) if groups: groups = [g + n for n, g in zip(newgroups, groups)] else: groups = newgroups return [thisgroup] + groups # Custom function to label group bars def label_group_bar(ax, data): groups = mk_groups(data) xy = groups.pop() x, y = zip(*xy) ly = len(y) xticks = range(1, ly + 1) ax.bar(xticks, y, align='center') ax.set_xticks(xticks) ax.set_xticklabels(x) ax.set_xlim(.5, ly + .5) ax.yaxis.grid(True) scale = 1. / ly for pos in xrange(ly + 1): # change xrange to range for python3 add_line(ax, pos * scale, -.1) ypos = -.2 while groups: group = groups.pop() pos = 0 for label, rpos in group: lxpos = (pos + .5 * rpos) * scale ax.text(lxpos, ypos, label, ha='center', transform=ax.transAxes) add_line(ax, pos * scale, ypos) pos += rpos add_line(ax, pos * scale, ypos) ypos -= .1 # Example usage data = {'Room A': {'Shelf 1': {'Milk': 10, 'Water': 20}, 'Shelf 2': {'Sugar': 5, 'Honey': 6} }, 'Room B': {'Shelf 1': {'Wheat': 4, 'Corn': 7}, 'Shelf 2': {'Chicken': 2, 'Cow': 1} } } fig = plt.figure() ax = fig.add_subplot(1, 1, 1) label_group_bar(ax, data) fig.subplots_adjust(bottom=0.3) # Save the plot to a file fig.savefig('labeled_group_bar_chart.png')
설명:
- mk_groups() 함수는 입력 사전을 튜플 목록으로 재귀적으로 변환합니다. 여기서 각 튜플은 막대 그룹 또는 눈금 레이블과 막대 값을 나타냅니다. pair.
- label_group_bar() 함수는 이 변환된 데이터를 사용하여 아래에 그룹 레이블이 있는 막대 차트를 생성합니다.
- 추가 함수인 add_line()은 그룹을 구분하는 수직선을 만드는 데 사용됩니다. 그룹 레이블.
- 이 예에서는 이 사용자 정의를 사용하여 그룹화된 데이터로 막대 차트를 생성하는 방법을 보여줍니다. 솔루션입니다.
이 접근 방식은 Matplotlib의 막대 차트에 그룹 레이블을 추가하는 간단한 방법을 제공하므로 데이터 시각화 및 해석이 향상됩니다.
위 내용은 사용자 정의 함수를 사용하여 Matplotlib의 막대 차트에 그룹 레이블을 어떻게 추가할 수 있습니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python 3.6에 피클 파일로드 3.6 환경 보고서 오류 : modulenotfounderror : nomodulename ...

경치 좋은 스팟 댓글 분석에서 Jieba Word 세분화 문제를 해결하는 방법은 무엇입니까? 경치가 좋은 스팟 댓글 및 분석을 수행 할 때 종종 Jieba Word 세분화 도구를 사용하여 텍스트를 처리합니다 ...


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경
