Shape 및 데이터 유형의 배열을 할당할 수 없습니다
증상
Ubuntu 18에서 NumPy로 대규모 배열을 할당할 때, 사용자에게 "MemoryError: 모양이 있는 배열을 할당할 수 없습니다" 오류가 발생할 수 있습니다. 이는 시스템 메모리가 충분함에도 불구하고 발생합니다. 특히 macOS에서는 이러한 문제가 발생하지 않습니다.
원인
이 문제는 시스템의 오버 커밋 처리 모드에서 발생합니다. 기본 모드(0)에서는 커널이 물리적 메모리에 비해 너무 과도한 것으로 간주되는 할당 요청을 거부할 수 있습니다.
해결 방법
오류를 해결하려면:
-
오버커밋 모드를 확인하세요.
$ cat /proc/sys/vm/overcommit_memory
반환되는 경우 0, 2단계로 진행합니다.
-
루트로 "항상 오버커밋" 모드 활성화:
$ echo 1 > /proc/sys/vm/overcommit_memory
- 어레이 다시 시도 할당.
예
uint8 데이터 유형을 사용하는 차원 배열(156816, 36, 53806)의 경우:
import numpy as np # Allocate array with "always overcommit" mode enabled a = np.zeros((156816, 36, 53806), dtype='uint8') print(a.nbytes) # 303755101056 bytes
시스템은 특정 배열 요소가 기록될 때만 메모리를 할당합니다. 이를 통해 희소 배열을 사용할 수 있습니다.
위 내용은 NumPy가 Ubuntu에서 대규모 배열을 할당하지 못하는 이유는 무엇이며 어떻게 해결할 수 있습니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Pythonusesahybridmodelofilationandlostretation : 1) ThePyThoninterPretreCeterCompileSsourcodeIntOplatform-IndependentBecode.

Pythonisbothingretedandcompiled.1) 1) it 'scompiledtobytecodeforportabilityacrossplatforms.2) thebytecodeisthentenningreted, withfordiNamictyTeNgreted, WhithItmayBowerShiledlanguges.

예, youcanconcatenatelistsusingaloopinpython.1) useeparateloopsforeachlisttoAppenditemStoAresultlist.2) USEANESTEDLOOPTOINTERATEREATERVUNTIPLELISTSFORAMORECOCISOPPOACH.3) ApplyDingConcatenation, likefilterningevennumbers

themostefficientmethodsforconcatenatinglistsinpythonare : 1) theextend () methodforin-placemodification, 2) itertools.chain () formemoryefficiencywithlargedatasets.theextend () methodModifiestHeoriginAllist, MakingItMemory-effectrequiretcautionsucution

Pythonloopsincludeforandforandwhilleoops, withforloopsidealfor and with with with withlopsidealforcections and whileleloopsforcondition basedrepetition.bestpracticesinvolve : 1) 사용 listcomprehensionsforsimpletransformations, 2) forindex-valuepairs, 3) optingforrangeoverlistsformemor를 사용합니다

Python은 엄격하게 라인 별 실행이 아니지만 통역사 메커니즘을 기반으로 최적화되고 조건부 실행입니다. 통역사는 코드를 PVM에 의해 실행 된 바이트 코드로 변환하며 상수 표현식을 사전 컴파일하거나 루프를 최적화 할 수 있습니다. 이러한 메커니즘을 이해하면 코드를 최적화하고 효율성을 향상시키는 데 도움이됩니다.

Python에는 두 개의 목록을 연결하는 방법이 많이 있습니다. 1. 연산자 사용 간단하지만 큰 목록에서는 비효율적입니다. 2. 효율적이지만 원래 목록을 수정하는 확장 방법을 사용하십시오. 3. 효율적이고 읽기 쉬운 = 연산자를 사용하십시오. 4. 메모리 효율적이지만 추가 가져 오기가 필요한 itertools.chain function을 사용하십시오. 5. 우아하지만 너무 복잡 할 수있는 목록 구문 분석을 사용하십시오. 선택 방법은 코드 컨텍스트 및 요구 사항을 기반으로해야합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경