안녕하세요 개발자 여러분,
마이크로서비스는 확장 가능하고 유연한 시스템을 구축하는 방식에 혁명을 일으켰습니다. 그러나 특히 서비스 전반에 걸쳐 분산 트랜잭션을 관리할 때 복잡성이 발생합니다. 이것이 바로 마이크로서비스에서 장기 실행 트랜잭션을 처리하기 위한 강력한 디자인 패턴인 사가 패턴이 등장하는 곳입니다. 이 게시물에서는 Saga Pattern이 무엇인지, 어떻게 작동하는지 살펴보고 C#의 HR(인적 자원) 사용 사례를 통해 실제로 어떻게 작동하는지 살펴보겠습니다.
사가 패턴이란 무엇입니까?
Saga 패턴은 대규모 분산 트랜잭션을 일련의 작은 단계로 나누고 각 단계는 특정 마이크로서비스에 의해 처리됩니다. 이러한 단계는 순서대로 실행되며, 문제가 발생할 경우 롤백하기 위해 각 단계에 대해 보상 작업이 정의됩니다.
사가 패턴을 구현하는 데는 두 가지 기본 접근 방식이 있습니다.
- 안무: 각 서비스는 이벤트를 듣고 반응하며 자체적으로 조정됩니다.
- 오케스트레이션: 중앙 코디네이터 서비스가 거래 흐름을 관리합니다.
Saga 패턴을 사용하는 이유는 무엇입니까?
Saga 패턴은 다음과 같은 마이크로서비스 아키텍처에 특히 유용합니다.
- 거래는 다양한 서비스(예: HR, 급여, 채용)에 걸쳐 이루어집니다.
- 확장성과 분리가 필수적입니다.
- 부분적인 실패를 적절하게 처리하는 것이 중요합니다.
HR 사용 사례: 직원 온보딩
신규 직원 온보딩에 여러 마이크로서비스가 포함되는 HR(인적 자원) 시스템을 상상해 보세요.
- 사용자 서비스: 직원 계정을 생성합니다.
- 급여 서비스: 급여 세부사항을 설정합니다.
- 복리후생서비스: 직원의 복리후생을 등록합니다.
온보딩 프로세스를 완료하려면 이러한 서비스가 함께 작동해야 합니다. 급여 서비스가 실패하면 시스템에서 계정 생성 및 혜택 등록을 취소해야 합니다.
C에서 Saga 패턴 구현
직원 온보딩 프로세스를 오케스트레이션으로 사가 패턴을 구현해 보겠습니다.
1단계: Saga 코디네이터 정의
사가 코디네이터는 거래 흐름을 관리합니다. C#의 기본 구현은 다음과 같습니다.
public class SagaCoordinator { private readonly IUserService _userService; private readonly IPayrollService _payrollService; private readonly IBenefitsService _benefitsService; public SagaCoordinator(IUserService userService, IPayrollService payrollService, IBenefitsService benefitsService) { _userService = userService; _payrollService = payrollService; _benefitsService = benefitsService; } public async Task ExecuteOnboardingSagaAsync(Employee employee) { try { Console.WriteLine("Starting onboarding saga..."); // Step 1: Create user account await _userService.CreateUserAsync(employee); // Step 2: Set up payroll await _payrollService.SetupPayrollAsync(employee); // Step 3: Register benefits await _benefitsService.RegisterBenefitsAsync(employee); Console.WriteLine("Onboarding completed successfully!"); } catch (Exception ex) { Console.WriteLine($"Error during onboarding: {ex.Message}"); await CompensateAsync(employee); } } private async Task CompensateAsync(Employee employee) { Console.WriteLine("Compensating..."); await _benefitsService.RollbackBenefitsAsync(employee); await _payrollService.RollbackPayrollAsync(employee); await _userService.DeleteUserAsync(employee); Console.WriteLine("Compensation complete."); } }
2단계: 서비스 정의
각 서비스는 특정 논리와 보상 조치를 구현합니다.
public interface IUserService { Task CreateUserAsync(Employee employee); Task DeleteUserAsync(Employee employee); } public interface IPayrollService { Task SetupPayrollAsync(Employee employee); Task RollbackPayrollAsync(Employee employee); } public interface IBenefitsService { Task RegisterBenefitsAsync(Employee employee); Task RollbackBenefitsAsync(Employee employee); }
이러한 인터페이스의 구현은 데이터베이스 또는 기타 API와 상호 작용합니다.
3단계: Saga 실행
Saga 코디네이터를 사용하는 방법은 다음과 같습니다.
public class SagaCoordinator { private readonly IUserService _userService; private readonly IPayrollService _payrollService; private readonly IBenefitsService _benefitsService; public SagaCoordinator(IUserService userService, IPayrollService payrollService, IBenefitsService benefitsService) { _userService = userService; _payrollService = payrollService; _benefitsService = benefitsService; } public async Task ExecuteOnboardingSagaAsync(Employee employee) { try { Console.WriteLine("Starting onboarding saga..."); // Step 1: Create user account await _userService.CreateUserAsync(employee); // Step 2: Set up payroll await _payrollService.SetupPayrollAsync(employee); // Step 3: Register benefits await _benefitsService.RegisterBenefitsAsync(employee); Console.WriteLine("Onboarding completed successfully!"); } catch (Exception ex) { Console.WriteLine($"Error during onboarding: {ex.Message}"); await CompensateAsync(employee); } } private async Task CompensateAsync(Employee employee) { Console.WriteLine("Compensating..."); await _benefitsService.RollbackBenefitsAsync(employee); await _payrollService.RollbackPayrollAsync(employee); await _userService.DeleteUserAsync(employee); Console.WriteLine("Compensation complete."); } }
Saga 패턴의 장점
- 복원력: 장기 실행 프로세스의 오류 복구를 가능하게 합니다.
- 확장성: 트랜잭션 무결성을 유지하면서 서비스를 분리합니다.
- 유연성: 보상 로직을 맞춤화하여 다양한 워크플로우를 지원합니다.
최종 생각
Saga 패턴은 마이크로서비스와 같은 분산 시스템에서 데이터 일관성을 유지하는 데 중요한 디자인 패턴입니다. HR 예에서는 전체 온보딩 프로세스가 성공적으로 완료되거나 정상적으로 롤백되어 시스템 무결성이 유지되도록 했습니다.
Saga와 같은 패턴을 활용하여 분산 트랜잭션의 복잡성을 처리하는 강력한 시스템을 설계할 수 있습니다.
계속 코딩하세요
위 내용은 마이크로서비스의 사가 패턴의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

이 기사에서는 컨테이너, 반복자, 알고리즘 및 함수 인 핵심 구성 요소에 중점을 둔 C 표준 템플릿 라이브러리 (STL)에 대해 설명합니다. 일반적인 프로그래밍을 가능하게하기 위해 이러한 상호 작용, 코드 효율성 및 가독성 개선 방법에 대해 자세히 설명합니다.

이 기사는 효율적인 STL 알고리즘 사용을 자세히 설명합니다. 데이터 구조 선택 (벡터 대 목록), 알고리즘 복잡성 분석 (예 : std :: sort vs. std :: partial_sort), 반복자 사용 및 병렬 실행을 강조합니다. 일반적인 함정과 같은

이 기사는 C에서 효과적인 예외 처리를 자세히 설명하고, 시도, 캐치 및 던지기 메커니즘을 다룹니다. RAII와 같은 모범 사례, 불필요한 캐치 블록을 피하고 강력한 코드에 대한 예외를 기록합니다. 이 기사는 또한 Perf를 다룹니다

이 기사는 C의 동적 파견, 성능 비용 및 최적화 전략에 대해 설명합니다. 동적 파견이 성능에 영향을 미치는 시나리오를 강조하고이를 정적 파견과 비교하여 성능과 성능 간의 트레이드 오프를 강조합니다.

이 기사는 C에서 Move Semantics를 사용하여 불필요한 복사를 피함으로써 성능을 향상시키는 것에 대해 논의합니다. STD :: MOVE를 사용하여 이동 생성자 및 할당 연산자 구현을 다루고 효과적인 APPL을위한 주요 시나리오 및 함정을 식별합니다.

C 20 범위는 표현성, 합성 가능성 및 효율성으로 데이터 조작을 향상시킵니다. 더 나은 성능과 유지 관리를 위해 복잡한 변환을 단순화하고 기존 코드베이스에 통합합니다.

기사는 Move Semantics, Perfect Forwarding 및 Resource Management에 대한 C에서 RValue 참조의 효과적인 사용에 대해 논의하여 모범 사례 및 성능 향상을 강조합니다 (159 자).

C 메모리 관리는 새로운, 삭제 및 스마트 포인터를 사용합니다. 이 기사는 매뉴얼 대 자동화 된 관리 및 스마트 포인터가 메모리 누출을 방지하는 방법에 대해 설명합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

Dreamweaver Mac版
시각적 웹 개발 도구

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음
