Pandas의 수식에서 표현식을 동적으로 평가
pd.eval을 사용하여 하나 이상의 데이터 프레임 열에 대한 산술 표현식을 평가하는 것은 특히 자동화할 때 일반적인 작업입니다. 워크플로우. 다음 코드 조각을 고려하세요.
`x = 5
df2['D'] = df1['A'] (df1['B'] * x)``
이 코드는 df1의 열 A와 B에 대한 연산을 수행하고 그 결과에 변수 x를 곱하여 df2에 새 열 D를 추가합니다. 목표는 표현식을 문자열로 실행하는 pd.eval의 기능을 활용하여 이 데이터 조작을 동적으로 반복하는 것입니다.
먼저 입력 DataFrames를 소개하겠습니다.
import pandas as pd import numpy as np np.random.seed(0) df1 = pd.DataFrame(np.random.choice(10, (5, 4)), columns=list('ABCD')) df2 = pd.DataFrame(np.random.choice(10, (5, 4)), columns=list('ABCD')) df1 A B C D 0 5 0 3 3 1 7 9 3 5 2 2 4 7 6 3 8 8 1 6 4 7 7 8 1 df2 A B C D 0 5 9 8 9 1 4 3 0 3 2 5 0 2 3 3 8 1 3 3 4 3 7 0 1
다음을 사용하여 표현식을 동적으로 평가합니다. pd.eval, 다음 코드를 사용할 수 있습니다:
result = pd.eval('df1.A (df1.B * x)')
이 코드 줄은 평가된 표현식이 포함된 result라는 새 DataFrame을 생성합니다. eval 함수를 사용하여 다음과 같은 조건부 평가를 수행할 수도 있습니다.
pd.eval('df1.A > df2.A')
식 결과를 다시 할당하려면 df2에 다음 구문을 사용합니다:
df2['D'] = pd.eval('df1.A (df1.B * x)', target=df2)
표현식 문자열 내에서 인수를 전달하려면 @ 기호를 사용하세요.
pd.eval('df1.A (df1. B * @x)', local_dict={'x': 5})
성능을 극대화하려면 다음을 고려하세요. 인수:
parser='python'은 구문 규칙을 제어하고 Python의 연산자 우선 순위와의 일관성을 보장합니다.
engine='numexpr'은 최적화된 numexpr 백엔드를 사용하여 더 빠르게 평가할 수 있습니다.
이는 다음을 제공해야 합니다. pd.eval을 사용하여 Pandas의 수식에서 표현식을 동적으로 평가하는 방법을 포괄적으로 이해합니다.
위 내용은 pd.eval을 사용하여 Pandas의 수식에서 표현식을 동적으로 평가하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

Python과 C는 메모리 관리 및 제어에 상당한 차이가 있습니다. 1. Python은 참조 계산 및 쓰레기 수집을 기반으로 자동 메모리 관리를 사용하여 프로그래머의 작업을 단순화합니다. 2.C는 메모리 수동 관리가 필요하므로 더 많은 제어를 제공하지만 복잡성과 오류 위험을 증가시킵니다. 선택할 언어는 프로젝트 요구 사항 및 팀 기술 스택을 기반으로해야합니다.

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

Python 또는 C를 선택할 것인지 프로젝트 요구 사항에 따라 다릅니다. 1) Python은 간결한 구문 및 풍부한 라이브러리로 인해 빠른 개발, 데이터 과학 및 스크립팅에 적합합니다. 2) C는 컴파일 및 수동 메모리 관리로 인해 시스템 프로그래밍 및 게임 개발과 같은 고성능 및 기본 제어가 필요한 시나리오에 적합합니다.

Python은 데이터 과학 및 기계 학습에 널리 사용되며 주로 단순성과 강력한 라이브러리 생태계에 의존합니다. 1) 팬더는 데이터 처리 및 분석에 사용되며, 2) Numpy는 효율적인 수치 계산을 제공하며 3) Scikit-Learn은 기계 학습 모델 구성 및 최적화에 사용되며 이러한 라이브러리는 Python을 데이터 과학 및 기계 학습에 이상적인 도구로 만듭니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

Dreamweaver Mac版
시각적 웹 개발 도구

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

WebStorm Mac 버전
유용한 JavaScript 개발 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.
