Python 함수 오버로딩: 솔루션으로서의 다중 디스패치
Python은 다른 프로그래밍 언어와 달리 메소드 오버로딩을 지원하지 않습니다. 즉, 이름은 같지만 매개변수가 다른 여러 함수를 정의할 수 없습니다. 이는 입력 인수에 따라 다양한 동작을 갖는 함수를 생성해야 할 때 특히 어려울 수 있습니다.
이 문제에 대한 잠재적인 해결책 중 하나는 다중 디스패치를 사용하는 것입니다. 이를 통해 함수가 유형에 따라 동적으로 디스패치될 수 있습니다. 그들의 주장. 이 접근 방식은 multipledispatch 라이브러리를 사용하여 Python에서 구현됩니다.
Python에서 다중 디스패치를 보여주기 위해 다양한 속성을 가진 글머리 기호를 만드는 예를 고려해 보겠습니다. add_bullet 함수의 네 가지 버전을 정의할 수 있으며 각각은 특정 인수 조합을 처리합니다.
from multipledispatch import dispatch from collections import namedtuple Sprite = namedtuple('Sprite', ['name']) Point = namedtuple('Point', ['x', 'y']) Curve = namedtuple('Curve', ['x', 'y', 'z']) Vector = namedtuple('Vector', ['x','y','z']) @dispatch(Sprite, Point, Vector, int) def add_bullet(sprite, start, direction, speed): print("Called Version 1") @dispatch(Sprite, Point, Point, int, float) def add_bullet(sprite, start, headto, speed, acceleration): print("Called version 2") @dispatch(Sprite, LambdaType) def add_bullet(sprite, script): print("Called version 3") @dispatch(Sprite, Curve, int) def add_bullet(sprite, curve, speed): print("Called version 4")
이 예에서는 add_bullet 함수의 네 가지 버전을 정의했습니다.
- 버전 1은 주어진 속도로 한 지점에서 벡터로 이동하는 총알을 처리합니다.
- 버전 2는 다음 지점에서 이동하는 총알을 처리합니다. 주어진 속도와 가속도로 한 점에서 한 점으로 이동합니다.
- 버전 3은 스크립트로 제어되는 총알을 처리합니다.
- 버전 4는 곡선 경로의 총알을 처리합니다.
add_bullet 함수를 사용하려면 원하는 동작에 대한 적절한 인수를 제공하기만 하면 됩니다. 예를 들면 다음과 같습니다.
sprite = Sprite('Turtle') start = Point(1,2) direction = Vector(1,1,1) speed = 100 #km/h acceleration = 5.0 #m/s**2 script = lambda sprite: sprite.x * 2 curve = Curve(3, 1, 4) headto = Point(100, 100) # somewhere far away add_bullet(sprite, start, direction, speed) # Called Version 1 add_bullet(sprite, start, headto, speed, acceleration) # Called version 2 add_bullet(sprite, script) # Called version 3 add_bullet(sprite, curve, speed) # Called version 4
보시다시피, multipledispatch 라이브러리를 사용하면 이름은 같지만 매개변수 유형이 다른 여러 함수를 정의할 수 있습니다. 이는 키워드 인수나 복잡한 함수 명명 규칙 없이 다양한 동작으로 함수를 처리하는 편리하고 유연한 방법을 제공합니다.
위 내용은 다중 디스패치가 Python의 함수 오버로딩 부족을 어떻게 해결할 수 있습니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python은 엄격하게 라인 별 실행이 아니지만 통역사 메커니즘을 기반으로 최적화되고 조건부 실행입니다. 통역사는 코드를 PVM에 의해 실행 된 바이트 코드로 변환하며 상수 표현식을 사전 컴파일하거나 루프를 최적화 할 수 있습니다. 이러한 메커니즘을 이해하면 코드를 최적화하고 효율성을 향상시키는 데 도움이됩니다.

Python에는 두 개의 목록을 연결하는 방법이 많이 있습니다. 1. 연산자 사용 간단하지만 큰 목록에서는 비효율적입니다. 2. 효율적이지만 원래 목록을 수정하는 확장 방법을 사용하십시오. 3. 효율적이고 읽기 쉬운 = 연산자를 사용하십시오. 4. 메모리 효율적이지만 추가 가져 오기가 필요한 itertools.chain function을 사용하십시오. 5. 우아하지만 너무 복잡 할 수있는 목록 구문 분석을 사용하십시오. 선택 방법은 코드 컨텍스트 및 요구 사항을 기반으로해야합니다.

Python 목록을 병합하는 방법에는 여러 가지가 있습니다. 1. 단순하지만 큰 목록에 대한 메모리 효율적이지 않은 연산자 사용; 2. 효율적이지만 원래 목록을 수정하는 확장 방법을 사용하십시오. 3. 큰 데이터 세트에 적합한 itertools.chain을 사용하십시오. 4. 사용 * 운영자, 한 줄의 코드로 중소형 목록을 병합하십시오. 5. Numpy.concatenate를 사용하십시오. 이는 고성능 요구 사항이있는 대규모 데이터 세트 및 시나리오에 적합합니다. 6. 작은 목록에 적합하지만 비효율적 인 Append Method를 사용하십시오. 메소드를 선택할 때는 목록 크기 및 응용 프로그램 시나리오를 고려해야합니다.

CompiledLanguagesOfferSpeedSecurity, while InterpretedLanguagesProvideeaseofusEandportability

Python에서, for 루프는 반복 가능한 물체를 가로 지르는 데 사용되며, 조건이 충족 될 때 반복적으로 작업을 수행하는 데 사용됩니다. 1) 루프 예제 : 목록을 가로 지르고 요소를 인쇄하십시오. 2) 루프 예제 : 올바르게 추측 할 때까지 숫자 게임을 추측하십시오. 마스터 링 사이클 원리 및 최적화 기술은 코드 효율성과 안정성을 향상시킬 수 있습니다.

목록을 문자열로 연결하려면 Python의 join () 메소드를 사용하는 것이 최선의 선택입니다. 1) join () 메소드를 사용하여 목록 요소를 ''.join (my_list)과 같은 문자열로 연결하십시오. 2) 숫자가 포함 된 목록의 경우 연결하기 전에 맵 (str, 숫자)을 문자열로 변환하십시오. 3) ','. join (f '({fruit})'forfruitinfruits와 같은 복잡한 형식에 발전기 표현식을 사용할 수 있습니다. 4) 혼합 데이터 유형을 처리 할 때 MAP (str, mixed_list)를 사용하여 모든 요소를 문자열로 변환 할 수 있도록하십시오. 5) 큰 목록의 경우 ''.join (large_li

PythonuseSahybrideactroach, combingingcompytobytecodeandingretation.1) codeiscompiledToplatform-IndependentBecode.2) bytecodeistredbythepythonvirtonmachine, enterancingefficiency andportability.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

WebStorm Mac 버전
유용한 JavaScript 개발 도구

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음