UndefineMetricWarning: F-Score Error
scikit-learn의metrics.f1_score로 F-점수를 계산할 때 사용자에게 경고가 나타날 수 있습니다.
"정의되지 않은MetricWarning: F-점수가 잘못 정의되었으며 예측 샘플이 없는 레이블에서 0.0으로 설정되었습니다."
경고 이해
이것은 실제 레이블(y_test)의 일부 레이블이 예측 레이블(y_pred)에 나타나지 않으면 경고가 발생합니다. 이러한 경우 예측되지 않은 라벨에 대한 F-점수는 계산할 수 없으며 0.0으로 가정됩니다.
예
레이블 '2'가 있는 다음 예를 고려하세요. 예측에는 없습니다:
y_test = [1, 10, 35, 9, 7, 29, 26, 3, 8, 23, 39, 11, 20, 2, 5, 23, 28, 30, 32, 18, 5, 34, 4, 25, 12, 24, 13, 21, 38, 19, 33, 33, 16, 20, 18, 27, 39, 20, 37, 17, 31, 29, 36, 7, 6, 24, 37, 22, 30, 0, 22, 11, 35, 30, 31, 14, 32, 21, 34, 38, 5, 11, 10, 6, 1, 14, 12, 36, 25, 8, 30, 3, 12, 7, 4, 10, 15, 12, 34, 25, 26, 29, 14, 37, 23, 12, 19, 19, 3, 2, 31, 30, 11, 2, 24, 19, 27, 22, 13, 6, 18, 20, 6, 34, 33, 2, 37, 17, 30, 24, 2, 36, 9, 36, 19, 33, 35, 0, 4, 1] y_pred = [1, 10, 35, 7, 7, 29, 26, 3, 8, 23, 39, 11, 20, 4, 5, 23, 28, 30, 32, 18, 5, 39, 4, 25, 0, 24, 13, 21, 38, 19, 33, 33, 16, 20, 18, 27, 39, 20, 37, 17, 31, 29, 36, 7, 6, 24, 37, 22, 30, 0, 22, 11, 35, 30, 31, 14, 32, 21, 34, 38, 5, 11, 10, 6, 1, 14, 30, 36, 25, 8, 30, 3, 12, 7, 4, 10, 15, 12, 4, 22, 26, 29, 14, 37, 23, 12, 19, 19, 3, 25, 31, 30, 11, 25, 24, 19, 27, 22, 13, 6, 18, 20, 6, 39, 33, 9, 37, 17, 30, 24, 9, 36, 39, 36, 19, 33, 35, 0, 4, 1] print(metrics.f1_score(y_test, y_pred, average='weighted'))
이 코드는 경고를 생성합니다.
왜 가끔씩만 발생합니까?
경고는 첫 번째에만 나타납니다. 대부분의 Python 환경은 특정 경고를 한 번만 표시하기 때문에 시간 F-점수가 계산됩니다. 그러나 이 동작은 warnings.filterwarnings('always')를 사용하여 변경할 수 있습니다.
경고를 피하는 방법
경고가 표시되지 않도록 하려면 다음 중 하나를 설정하세요. scikit-learn을 가져오기 전에 warnings.filterwarnings('ignore')를 수행하거나 다음과 같이 F-점수 계산 시 관심 있는 레이블을 명시적으로 지정하십시오.
# Ignore warnings warnings.filterwarnings('ignore') metrics.f1_score(y_test, y_pred, average='weighted') # Explicitly specify labels unique_labels = np.unique(y_pred) metrics.f1_score(y_test, y_pred, average='weighted', labels=unique_labels)
위 내용은 Scikit-learn의 F1-Score가 'UndefineMetricWarning'을 생성하는 이유는 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python 3.6에 피클 파일로드 3.6 환경 보고서 오류 : modulenotfounderror : nomodulename ...


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경
