찾다
백엔드 개발파이썬 튜토리얼Selenium을 Scrapy와 어떻게 통합하여 동적 페이지를 스크랩할 수 있습니까?

How can Selenium be Integrated with Scrapy to Scrape Dynamic Pages?

동적 페이지용 Scrapy와 Selenium 통합

동적 콘텐츠가 포함된 복잡한 웹사이트를 스크랩할 때 웹 자동화 프레임워크인 Selenium을 다음과 통합할 수 있습니다. 문제를 극복하기 위한 웹 스크래핑 프레임워크인 Scrapy.

통합 Selenium을 Scrapy Spider로

Selenium을 Scrapy 스파이더에 통합하려면 스파이더의 __init__ 메서드 내에서 Selenium WebDriver를 초기화합니다.

import scrapy
from selenium import webdriver

class ProductSpider(scrapy.Spider):
    name = "product_spider"
    allowed_domains = ['example.com']
    start_urls = ['http://example.com/shanghai']
    
    def __init__(self):
        self.driver = webdriver.Firefox()

다음으로 구문 분석 내의 URL로 이동합니다. 방법을 사용하고 Selenium 방법을 활용하여 페이지.

def parse(self, response):
    self.driver.get(response.url)
    next = self.driver.find_element_by_xpath('//td[@class="pagn-next"]/a')
    next.click()

이 접근 방식을 활용하면 사용자 상호 작용을 시뮬레이션하고, 동적 페이지를 탐색하고, 원하는 데이터를 추출할 수 있습니다.

Scrapy와 함께 Selenium을 사용하는 대안

특정 시나리오에서는 ScrapyJS 미들웨어를 사용하면 페이지의 동적 부분을 처리하는 데 충분할 수 있습니다. 셀레늄에 의존합니다. 예를 들어 다음 예를 참조하세요.

# scrapy.cfg
DOWNLOADER_MIDDLEWARES = {
    'scrapyjs.SplashMiddleware': 580,
}
# my_spider.py
class MySpider(scrapy.Spider):
    name = 'my_spider'
    start_urls = ['http://example.com/dynamic']
    
    def parse(self, response):
        script = 'function() { return document.querySelectorAll("div.product-info").length; }'
        return Request(url=response.url, callback=self.parse_product, meta={'render_javascript': True, 'javascript': script})

    def parse_product(self, response):
        product_count = int(response.xpath('//*[@data-scrapy-meta]/text()').extract_first())

이 접근 방식은 ScrapyJS를 사용하는 JavaScript 렌더링을 사용하여 Selenium을 사용하지 않고 원하는 데이터를 얻습니다.

위 내용은 Selenium을 Scrapy와 어떻게 통합하여 동적 페이지를 스크랩할 수 있습니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
배열이 숫자 데이터를 저장하는 목록보다 일반적으로 더 메모리 효율적인 이유는 무엇입니까?배열이 숫자 데이터를 저장하는 목록보다 일반적으로 더 메모리 효율적인 이유는 무엇입니까?May 05, 2025 am 12:15 AM

ArraysareGenerallyMorememory- 효율적 인 thanlistsortingnumericaldataduetotheirfixed-sizenatureanddirectmemoryAccess.1) ArraysStoreElementsInacontiguousBlock, retoneverHead-fompointerSormetAdata.2) 목록, 종종 implementededymamamicArraysorlinkedStruct

파이썬 목록을 파이썬 어레이로 어떻게 변환 할 수 있습니까?파이썬 목록을 파이썬 어레이로 어떻게 변환 할 수 있습니까?May 05, 2025 am 12:10 AM

ToconvertapyThonlisttoAnarray, usethearraymodule : 1) importThearrayModule, 2) CreateAlist, 3) Usearray (typecode, list) toconvertit, thetypecodelike'i'forintegers

동일한 Python 목록에 다른 데이터 유형을 저장할 수 있습니까? 예를 들어보세요.동일한 Python 목록에 다른 데이터 유형을 저장할 수 있습니까? 예를 들어보세요.May 05, 2025 am 12:10 AM

Python 목록은 다양한 유형의 데이터를 저장할 수 있습니다. 예제 목록에는 정수, 문자열, 부동 소수점 번호, 부울, 중첩 목록 및 사전이 포함되어 있습니다. 목록 유연성은 데이터 처리 및 프로토 타이핑에서 가치가 있지만 코드의 가독성과 유지 관리를 보장하기 위해주의해서 사용해야합니다.

파이썬의 배열과 목록의 차이점은 무엇입니까?파이썬의 배열과 목록의 차이점은 무엇입니까?May 05, 2025 am 12:06 AM

PythondoesnothaveBuilt-inarrays; Usethearraymoduleformory- 효율적인 호모 유전자 도자기, whilistsareversartileformixedDatatypes.arraysareefficiTiveDatasetsophesAty, whereferfiblityAndareAsiErtouseFormixOrdorSmallerSmallerSmallerSMATASETS.

파이썬에서 배열을 만드는 데 일반적으로 사용되는 모듈은 무엇입니까?파이썬에서 배열을 만드는 데 일반적으로 사용되는 모듈은 무엇입니까?May 05, 2025 am 12:02 AM

themoscommonLyusedModuleForraySinisThonisNumpy.1) NumpyProvideseficileditionToolsForArrayOperations, IdealFornumericalData.2) ArrayscanBecreatedUsingnp.array () for1dand2dsuctures.3) Numpyexcelsinlement-wiseOperations Numpyexcelscelslikemea

Python 목록에 요소를 어떻게 추가합니까?Python 목록에 요소를 어떻게 추가합니까?May 04, 2025 am 12:17 AM

toAppendElementStoapyThonList, usetHeappend () MethodForsingleElements, extend () formultipleements, andinsert () forspecificpositions.1) useappend () foraddingOneElementatateend.2) usextend () toaddmultipleementsefficially

파이썬 목록을 어떻게 만드나요? 예를 들어보세요.파이썬 목록을 어떻게 만드나요? 예를 들어보세요.May 04, 2025 am 12:16 AM

To TeCreateAtheThonList, usequareBrackets [] andseparateItemswithCommas.1) ListSaredynamicandCanholdMixedDatAtatypes.2) useappend (), remove () 및 SlicingFormAnipulation.3) listlisteforences;) ORSL

수치 데이터의 효율적인 저장 및 처리가 중요한 경우 실제 사용 사례에 대해 토론하십시오.수치 데이터의 효율적인 저장 및 처리가 중요한 경우 실제 사용 사례에 대해 토론하십시오.May 04, 2025 am 12:11 AM

금융, 과학 연구, 의료 및 AI 분야에서 수치 데이터를 효율적으로 저장하고 처리하는 것이 중요합니다. 1) 금융에서 메모리 매핑 파일과 Numpy 라이브러리를 사용하면 데이터 처리 속도가 크게 향상 될 수 있습니다. 2) 과학 연구 분야에서 HDF5 파일은 데이터 저장 및 검색에 최적화됩니다. 3) 의료에서 ​​인덱싱 및 파티셔닝과 같은 데이터베이스 최적화 기술은 데이터 쿼리 성능을 향상시킵니다. 4) AI에서 데이터 샤딩 및 분산 교육은 모델 교육을 가속화합니다. 올바른 도구와 기술을 선택하고 스토리지 및 처리 속도 간의 트레이드 오프를 측정함으로써 시스템 성능 및 확장 성을 크게 향상시킬 수 있습니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

PhpStorm 맥 버전

PhpStorm 맥 버전

최신(2018.2.1) 전문 PHP 통합 개발 도구

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.