찾다
백엔드 개발파이썬 튜토리얼InsightfulAI 소개: 단순화된 기계 학습을 위한 공개 알파 API

Introducing InsightfulAI: Public Alpha API for Simplified Machine Learning

Python 개발자와 데이터 과학자가 분류 및 회귀 작업을 더 쉽게 할 수 있도록 설계된 Public Alpha APIInsightfulAI를 출시하게 되어 기쁩니다. . 이번 알파 릴리스는 PyPI에서 사용할 수 있으므로 pip로 빠르게 설치하고 테스트할 수 있습니다!

InsightfulAI는 복잡한 기계 학습 코드를 다루기보다는 문제 해결에 집중할 수 있도록 간소화되고 직관적인 설정을 제공합니다. InsightfulAI의 미래를 형성하기 위한 귀중한 피드백을 제공하는 얼리 어답터가 될 수 있는 기회입니다.


InsightfulAI Alpha API의 주요 기능

  • 분류 및 회귀: 즉시 사용 가능한 로지스틱 회귀 및 랜덤 포레스트 모델이 포함됩니다.
  • 재시도 논리: 일시적인 오류를 처리하기 위해 실패한 작업을 자동으로 재시도합니다.
  • 사용자 정의 가능한 매개변수: 로지스틱 회귀 분석에서 C 및 솔버와 같은 하이퍼 매개변수를 구성하거나 랜덤 포레스트에 대해 n_estimators 및 max_length를 구성합니다.
  • 솔버 옵션: 로지스틱 회귀는 'lbfgs', 'liblinear', 'saga'와 같은 널리 사용되는 솔버를 지원하므로 데이터 세트의 크기와 특성에 따라 유연성을 제공합니다.
  • 일괄 비동기 처리: 배치에 대한 모델 학습, 예측, 평가를 비동기식으로 수행합니다. 이는 특히 대규모 데이터세트나 실시간 애플리케이션을 처리하는 데 유용합니다.
  • OpenTelemetry 지원: 내장된 OpenTelemetry 추적을 통해 모델의 훈련 및 예측 성능을 추적하여 모니터링 및 디버깅을 단순화합니다.

공개 알파 API는 기계 학습 프로젝트를 시작하고 기본 모니터링을 통합하는 데 필수적인 도구를 제공합니다.


InsightfulAI Public Alpha API를 설치하는 방법

PyPI에서 InsightfulAI의 알파 릴리스를 사용할 수 있습니다! 다음 명령을 사용하여 설치하십시오:

pip install InsightfulAI

이렇게 하면 InsightfulAI의 알파 버전이 설치되어 기능을 실험하고 개선하는 데 도움이 되는 피드백을 제공할 수 있습니다.


InsightfulAI 시작하기

다음은 프로젝트에서 InsightfulAI의 로지스틱 회귀 모델을 사용하는 방법에 대한 빠른 튜토리얼입니다.

1단계: 가져오기 및 초기화

API에서 InsightfulAI를 가져옵니다. 모델 유형(로지스틱 회귀 또는 랜덤 포레스트)을 선택하고 원하는 설정으로 초기화하세요.

from insightful_ai_api import InsightfulAI

# Initialize the API for logistic regression with solver choice
model = InsightfulAI(model_type="logistic_regression", C=1.0, solver='lbfgs')  # Options: 'lbfgs', 'liblinear', 'saga'

2단계: 데이터 준비

데이터세트를 numpy 배열 또는 pandas 데이터 프레임에 로드한 다음 훈련 및 테스트 세트로 분할합니다.

import numpy as np
from sklearn.model_selection import train_test_split

X = np.array([[...], ...])  # Features
y = np.array([...])          # Target

# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

3단계: 모델 학습

맞춤 방법을 사용하여 모델 학습:

pip install InsightfulAI

4단계: 일괄 비동기식 예측

배치 비동기 처리를 활용하여 대규모 배치를 효율적으로 예측하세요.

from insightful_ai_api import InsightfulAI

# Initialize the API for logistic regression with solver choice
model = InsightfulAI(model_type="logistic_regression", C=1.0, solver='lbfgs')  # Options: 'lbfgs', 'liblinear', 'saga'

5단계: 모델 성능 평가

평가 기능을 사용하여 모델 정확도를 평가하세요.

import numpy as np
from sklearn.model_selection import train_test_split

X = np.array([[...], ...])  # Features
y = np.array([...])          # Target

# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

OpenTelemetry로 모니터링

InsightfulAI에는 모니터링 및 추적을 위한 OpenTelemetry가 포함되어 있어 모델 성능에 대한 통찰력을 얻고 문제를 쉽게 디버깅할 수 있습니다.


지금 InsightfulAI 공개 알파 API를 사용해 보세요!

공개 알파 API 릴리스는 InsightfulAI를 직접 체험하고 발전에 영향을 줄 수 있는 기회입니다. PyPI에서 InsightfulAI 설치:

model.fit(X_train, y_train)
print("Model training complete!")

귀하의 피드백은 필수적입니다. 자세히 알아보고 기능을 살펴보고 의견을 알려주세요!

위 내용은 InsightfulAI 소개: 단순화된 기계 학습을 위한 공개 알파 API의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Python의 병합 목록 : 올바른 메소드 선택Python의 병합 목록 : 올바른 메소드 선택May 14, 2025 am 12:11 AM

Tomergelistsinpython, youcanusethe operator, extendmethod, listcomprehension, oritertools.chain, 각각은 각각의 지위를 불러 일으킨다

Python 3에서 두 목록을 연결하는 방법은 무엇입니까?Python 3에서 두 목록을 연결하는 방법은 무엇입니까?May 14, 2025 am 12:09 AM

Python 3에서는 다양한 방법을 통해 두 개의 목록을 연결할 수 있습니다. 1) 작은 목록에 적합하지만 큰 목록에는 비효율적입니다. 2) 메모리 효율이 높지만 원래 목록을 수정하는 큰 목록에 적합한 확장 방법을 사용합니다. 3) 원래 목록을 수정하지 않고 여러 목록을 병합하는 데 적합한 * 운영자 사용; 4) 메모리 효율이 높은 대형 데이터 세트에 적합한 itertools.chain을 사용하십시오.

Python은 문자열을 연결합니다Python은 문자열을 연결합니다May 14, 2025 am 12:08 AM

join () 메소드를 사용하는 것은 Python의 목록에서 문자열을 연결하는 가장 효율적인 방법입니다. 1) join () 메소드를 사용하여 효율적이고 읽기 쉽습니다. 2)주기는 큰 목록에 비효율적으로 운영자를 사용합니다. 3) List Comprehension과 Join ()의 조합은 변환이 필요한 시나리오에 적합합니다. 4) READE () 방법은 다른 유형의 감소에 적합하지만 문자열 연결에 비효율적입니다. 완전한 문장은 끝납니다.

파이썬 실행, 그게 뭐야?파이썬 실행, 그게 뭐야?May 14, 2025 am 12:06 AM

pythonexecutionissprocessoftransformingpythoncodeintoExecutableInstructions.1) the -interreadsTheCode, ConvertingItintoByTecode, thethepythonVirtualMachine (pvm)을 실행합니다

파이썬 : 주요 기능은 무엇입니까?파이썬 : 주요 기능은 무엇입니까?May 14, 2025 am 12:02 AM

Python의 주요 특징은 다음과 같습니다. 1. 구문은 간결하고 이해하기 쉽고 초보자에게 적합합니다. 2. 개발 속도 향상, 동적 유형 시스템; 3. 여러 작업을 지원하는 풍부한 표준 라이브러리; 4. 광범위한 지원을 제공하는 강력한 지역 사회와 생태계; 5. 스크립팅 및 빠른 프로토 타이핑에 적합한 해석; 6. 다양한 프로그래밍 스타일에 적합한 다중-파라 디그 지원.

파이썬 : 컴파일러 또는 통역사?파이썬 : 컴파일러 또는 통역사?May 13, 2025 am 12:10 AM

Python은 해석 된 언어이지만 편집 프로세스도 포함됩니다. 1) 파이썬 코드는 먼저 바이트 코드로 컴파일됩니다. 2) 바이트 코드는 Python Virtual Machine에 의해 해석되고 실행됩니다. 3)이 하이브리드 메커니즘은 파이썬이 유연하고 효율적이지만 완전히 편집 된 언어만큼 빠르지는 않습니다.

루프 대 루프를위한 파이썬 : 루프시기는 언제 사용해야합니까?루프 대 루프를위한 파이썬 : 루프시기는 언제 사용해야합니까?May 13, 2025 am 12:07 AM

USEAFORLOOPHENTERATINGOVERASERASERASPECIFICNUMBEROFTIMES; USEAWHILLOOPWHENTINUTIMONDITINISMET.FORLOOPSAREIDEALFORKNOWNSEDINGENCENCENS, WHILEWHILELOOPSSUITSITUATIONS WITHERMINGEDERITERATIONS.

파이썬 루프 : 가장 일반적인 오류파이썬 루프 : 가장 일반적인 오류May 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrors likeinfiniteloops, modifyinglistsdizeration, off-by-by-byerrors, zero-indexingissues, andnestedloopineficiencies.toavoidthese : 1) aing'i

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

안전한 시험 브라우저

안전한 시험 브라우저

안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는