사전을 사용하여 Pandas 시리즈의 값 대체 성능 향상
사전을 사용하여 Pandas 시리즈의 값을 바꾸는 것은 일반적인 작업입니다. s.replace(d)를 사용하여 값을 바꾸는 것이 권장되지만 간단한 목록 이해를 사용하는 것보다 훨씬 느릴 수 있습니다.
성능 저하의 원인
느린 성능 s.replace(d)는 극단적인 경우와 드문 상황을 처리하는 데서 유래합니다. 여기에는 다음이 포함됩니다.
- 사전을 목록으로 변환
- 목록을 반복하고 중첩된 사전을 확인합니다.
- 키와 값의 반복자를 기능 교체.
대체 방법
성능을 향상하려면 다음 방법을 사용하는 것이 좋습니다.
- 전체 맵 : 계열의 모든 값이 사전에 의해 매핑되는 경우 s.map(d)를 사용하세요. 이 방법은 효율적이고 지속적으로 빠릅니다.
- 부분 맵: 값의 작은 부분(예: 5% 미만)만 사전에 매핑되는 경우 s.map(d ).fillna(s['A']).astype(int). 이 접근 방식은 매핑과 채우기를 결합하여 값비싼 반복 작업이 필요하지 않습니다.
벤치마킹
벤치마크는 s.replace(d)와 s 간의 성능 차이를 보여줍니다. .map(d) 및 목록 이해:
##### Full Map ##### d = {i: i+1 for i in range(1000)} %timeit df['A'].replace(d) # Slow (1.98s) %timeit df['A'].map(d) # Fast (84.3ms) ##### Partial Map ##### d = {i: i+1 for i in range(10)} %timeit df['A'].replace(d) # Intermediate (20.1ms) %timeit df['A'].map(d).fillna(df['A']).astype(int) # Faster (111ms)
이는 전체 또는 부분 매핑에서 s.map(d)가 s.replace(d)보다 일관되게 빠르다는 것을 보여줍니다.
결론
사전 적용 범위의 완전성에 따라 s.map(d) 또는 s.map(d).fillna(s['A']).astype(int) Pandas 시리즈에서 효율적인 값 교체를 위해서는 s.replace(d)보다 선호되어야 합니다.
위 내용은 Pandas 시리즈에서 사전을 사용하여 값을 바꾸는 것이 느린 이유는 무엇이며 성능을 어떻게 향상시킬 수 있습니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경
