Matplotlib로 사용자 정의 색상맵 및 색상 스케일 만들기:
matplotlib에서 사용자 정의 색상맵을 만드는 과정은 간단합니다. 연속적인(부드러운) 색상 스케일을 설정하려면 ListedColormap 대신 LinearSegmentedColormap을 활용하는 것이 좋습니다.
import numpy as np import matplotlib.pyplot as plt import matplotlib.colors # Defining random data points x, y, c = zip(*np.random.rand(30, 3)*4 - 2) # Establishing normalization parameters norm = plt.Normalize(-2, 2) # Generating a linear segmented colormap from a list colormap = matplotlib.colors.LinearSegmentedColormap.from_list("", ["red", "violet", "blue"]) # Plotting the points with the custom colormap plt.scatter(x, y, c=c, cmap=colormap, norm=norm) # Adding a color scale to the plot plt.colorbar() plt.show()
이 방법은 지정된 값 사이의 원활한 색상 전환을 보장합니다.
추가 사용자 정의가 가능합니다. 정규화된 값과 해당 색상의 튜플을 from_list에 제공하여
# Custom values and colors custom_values = [-2, -1, 2] custom_colors = ["red", "violet", "blue"] # Generating a segmented colormap from custom tuples colormap = matplotlib.colors.LinearSegmentedColormap.from_list("", list(zip(map(norm, custom_values), custom_colors))) # Applying the colormap to the plot plt.scatter(x, y, c=c, cmap=colormap, norm=norm) plt.colorbar() plt.show()
이 기술을 활용하면 데이터를 정확하게 표현하는 개인화된 색상맵을 만들 수 있습니다.
위 내용은 Matplotlib를 사용하여 사용자 정의 색상 맵과 색상 스케일을 만드는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

forhandlinglargedatasetsinpython, usenumpyarraysforbetterperformance.1) numpyarraysarememory-effic andfasterfornumericaloperations.2) leveragevectorization foredtimecomplexity.4) managemoryusage withorfications data

inpython, listsusedyammoryAllocation과 함께 할당하고, whilempyarraysallocatefixedMemory.1) listsAllocatemememorythanneedInitiality.

Inpython, youcansspecthedatatypeyfelemeremodelerernspant.1) usenpynernrump.1) usenpynerp.dloatp.ploatm64, 포모 선례 전분자.

numpyissentialfornumericalcomputinginpythonduetoitsspeed, memory-efficiency 및 comperniveMathematicaticaltions

contiguousUousUousUlorAllocationScrucialForraysbecauseItAllowsOfficationAndFastElementAccess.1) ItenableSconstantTimeAccess, o (1), DuetodirectAddressCalculation.2) Itimprovesceeffiency theMultipleementFetchespercacheline.3) Itsimplififiesmomorym

slicepaythonlistisdoneusingthesyntaxlist [start : step : step] .here'showitworks : 1) startistheindexofthefirstelementtoinclude.2) stopistheindexofthefirstelemement.3) stepisincrementbetwetweentractionsoftortionsoflists

NumpyAllowsForVariousOperationsOnArrays : 1) BasicArithmeticLikeadDition, Subtraction, A 및 Division; 2) AdvancedOperationsSuchasmatrixmultiplication; 3) extrayintondsfordatamanipulation; 5) Ag

Arraysinpython, 특히 Stroughnumpyandpandas, areestentialfordataanalysis, setingspeedandefficiency


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

Dreamweaver Mac版
시각적 웹 개발 도구