Spark DataFrames에 상수 열 추가
Spark에서는 다양한 방법을 사용하여 각 행에 대해 특정 값을 갖는 DataFrame에 상수 열을 추가할 수 있습니다.
lit 및 기타 기능(Spark 1.3)
Spark 버전 1.3 이상에서는 lit 함수를 사용하여 상수 열을 추가하기 위해 DataFrame.withColumn의 두 번째 인수로 사용할 수 있는 리터럴 값을 생성합니다.
from pyspark.sql.functions import lit df.withColumn('new_column', lit(10))
더 복잡한 열의 경우 배열, map 및 struct를 사용하여 원하는 열 값을 작성할 수 있습니다.
from pyspark.sql.functions import array, map, struct df.withColumn("some_array", array(lit(1), lit(2), lit(3))) df.withColumn("some_map", map(lit("key1"), lit(1), lit("key2"), lit(2)))
typedLit(Spark 2.2 )
Spark 2.2에는 Seq, Map 및 Tuples를 상수로 제공하는 것을 지원하는 typedLit 함수가 도입되었습니다.
import org.apache.spark.sql.functions.typedLit df.withColumn("some_array", typedLit(Seq(1, 2, 3))) df.withColumn("some_struct", typedLit(("foo", 1, 0.3)))
UDF 사용
리터럴 사용의 대안 각 행에 대해 상수 값을 반환하는 사용자 정의 함수(UDF)를 만들고 해당 UDF를 사용할 수 있습니다. 열을 추가하려면:
from pyspark.sql.functions import udf, lit def add_ten(row): return 10 add_ten_udf = udf(add_ten, IntegerType()) df.withColumn('new_column', add_ten_udf(lit(1.0)))
참고:
상수 값은 동일한 구문을 사용하여 UDF 또는 SQL 함수에 인수로 전달될 수도 있습니다.
위 내용은 Spark DataFrames에 상수 열을 추가하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Tomergelistsinpython, youcanusethe operator, extendmethod, listcomprehension, oritertools.chain, 각각은 각각의 지위를 불러 일으킨다

Python 3에서는 다양한 방법을 통해 두 개의 목록을 연결할 수 있습니다. 1) 작은 목록에 적합하지만 큰 목록에는 비효율적입니다. 2) 메모리 효율이 높지만 원래 목록을 수정하는 큰 목록에 적합한 확장 방법을 사용합니다. 3) 원래 목록을 수정하지 않고 여러 목록을 병합하는 데 적합한 * 운영자 사용; 4) 메모리 효율이 높은 대형 데이터 세트에 적합한 itertools.chain을 사용하십시오.

join () 메소드를 사용하는 것은 Python의 목록에서 문자열을 연결하는 가장 효율적인 방법입니다. 1) join () 메소드를 사용하여 효율적이고 읽기 쉽습니다. 2)주기는 큰 목록에 비효율적으로 운영자를 사용합니다. 3) List Comprehension과 Join ()의 조합은 변환이 필요한 시나리오에 적합합니다. 4) READE () 방법은 다른 유형의 감소에 적합하지만 문자열 연결에 비효율적입니다. 완전한 문장은 끝납니다.

pythonexecutionissprocessoftransformingpythoncodeintoExecutableInstructions.1) the -interreadsTheCode, ConvertingItintoByTecode, thethepythonVirtualMachine (pvm)을 실행합니다

Python의 주요 특징은 다음과 같습니다. 1. 구문은 간결하고 이해하기 쉽고 초보자에게 적합합니다. 2. 개발 속도 향상, 동적 유형 시스템; 3. 여러 작업을 지원하는 풍부한 표준 라이브러리; 4. 광범위한 지원을 제공하는 강력한 지역 사회와 생태계; 5. 스크립팅 및 빠른 프로토 타이핑에 적합한 해석; 6. 다양한 프로그래밍 스타일에 적합한 다중-파라 디그 지원.

Python은 해석 된 언어이지만 편집 프로세스도 포함됩니다. 1) 파이썬 코드는 먼저 바이트 코드로 컴파일됩니다. 2) 바이트 코드는 Python Virtual Machine에 의해 해석되고 실행됩니다. 3)이 하이브리드 메커니즘은 파이썬이 유연하고 효율적이지만 완전히 편집 된 언어만큼 빠르지는 않습니다.

USEAFORLOOPHENTERATINGOVERASERASERASPECIFICNUMBEROFTIMES; USEAWHILLOOPWHENTINUTIMONDITINISMET.FORLOOPSAREIDEALFORKNOWNSEDINGENCENCENS, WHILEWHILELOOPSSUITSITUATIONS WITHERMINGEDERITERATIONS.

Pythonloopscanleadtoerrors likeinfiniteloops, modifyinglistsdizeration, off-by-by-byerrors, zero-indexingissues, andnestedloopineficiencies.toavoidthese : 1) aing'i


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

Dreamweaver Mac版
시각적 웹 개발 도구

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

WebStorm Mac 버전
유용한 JavaScript 개발 도구

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.