찾다
백엔드 개발파이썬 튜토리얼공백 없이 연결된 단어의 텍스트 문자열을 개별 단어로 효율적으로 분할할 수 있는 방법은 무엇입니까?

How can we efficiently split a text string of concatenated words without spaces into individual words?

공백 없이 텍스트를 단어 목록으로 분할

문제

공백 없이 연결된 단어로 구성된 텍스트 문자열이 주어진 경우:

Input: "tableapplechairtablecupboard..."

이 텍스트를 개별 단어 목록으로 효율적으로 분할할 수 있는 방법은 무엇입니까?

Output: ["table", "apple", "chair", "table", ["cupboard", ["cup", "board"]], ...]

알고리즘

간단한 접근 방식은 텍스트 내에서 가능한 가장 긴 단어를 반복적으로 찾는 것입니다. 그러나 이는 최적이 아닌 결과로 이어질 수 있습니다.

빈도 기반 알고리즘

대신, 언어에서 단어의 상대적 빈도를 활용하여 정확성을 높일 수 있습니다.

  1. 단어 분포 모델링: 단어가 독립적으로 분포되어 있고 단어 확률이 순위에 반비례하는 Zipf의 법칙을 따른다고 가정합니다.
  2. 단어 비용 정의: 비용 단어의 확률은 우도의 역의 로그로 정의됩니다.
  3. 동적 프로그래밍 접근 방식:

    • 첫 번째 단어가 있는 비용 배열을 초기화합니다. 요소는 0입니다.
    • 텍스트의 각 문자에 대해 해당 지점까지 문자의 총 비용을 최소화하는 단어를 찾습니다.
    • 끝에서 역추적하여 최소 비용 단어 시퀀스를 재구성합니다. .

코드 구현

<code class="python">from math import log

wordcost = {}  # Dictionary of word costs using Zipf's law

maxword = max(len(word) for word in wordcost)

def infer_spaces(s):
    cost = [0]
    for i in range(1, len(s) + 1):
        candidates = enumerate(reversed(cost[max(0, i - maxword):i]))
        c, k = min((wordcost.get(s[i - k - 1:i], 9e999) + c, k + 1) for k, c in candidates)
        cost.append(c)

    out = []
    i = len(s)
    while i > 0:
        c, k = best_match(i)
        assert c == cost[i]
        out.append(s[i - k:i])
        i -= k

    return " ".join(reversed(out))</code>

결과

이 알고리즘은 텍스트를 단어 목록으로 정확하게 분할할 수 있습니다. 공백이 없습니다.

예:

Input: "tableapplechairtablecupboard..."
Output: ["table", "apple", "chair", "table", ["cupboard", ["cup", "board"]], ...]

최적화:

  • 접미사 트리 : 단어 목록에서 접미사 트리를 구축하면 후보 검색 속도가 빨라질 수 있습니다.
  • 텍스트 블록 분할: 큰 텍스트 입력의 경우 텍스트를 블록으로 분할하여 정확성을 유지하면서 메모리 사용량을 최소화하세요.

위 내용은 공백 없이 연결된 단어의 텍스트 문자열을 개별 단어로 효율적으로 분할할 수 있는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Python의 병합 목록 : 올바른 메소드 선택Python의 병합 목록 : 올바른 메소드 선택May 14, 2025 am 12:11 AM

Tomergelistsinpython, youcanusethe operator, extendmethod, listcomprehension, oritertools.chain, 각각은 각각의 지위를 불러 일으킨다

Python 3에서 두 목록을 연결하는 방법은 무엇입니까?Python 3에서 두 목록을 연결하는 방법은 무엇입니까?May 14, 2025 am 12:09 AM

Python 3에서는 다양한 방법을 통해 두 개의 목록을 연결할 수 있습니다. 1) 작은 목록에 적합하지만 큰 목록에는 비효율적입니다. 2) 메모리 효율이 높지만 원래 목록을 수정하는 큰 목록에 적합한 확장 방법을 사용합니다. 3) 원래 목록을 수정하지 않고 여러 목록을 병합하는 데 적합한 * 운영자 사용; 4) 메모리 효율이 높은 대형 데이터 세트에 적합한 itertools.chain을 사용하십시오.

Python은 문자열을 연결합니다Python은 문자열을 연결합니다May 14, 2025 am 12:08 AM

join () 메소드를 사용하는 것은 Python의 목록에서 문자열을 연결하는 가장 효율적인 방법입니다. 1) join () 메소드를 사용하여 효율적이고 읽기 쉽습니다. 2)주기는 큰 목록에 비효율적으로 운영자를 사용합니다. 3) List Comprehension과 Join ()의 조합은 변환이 필요한 시나리오에 적합합니다. 4) READE () 방법은 다른 유형의 감소에 적합하지만 문자열 연결에 비효율적입니다. 완전한 문장은 끝납니다.

파이썬 실행, 그게 뭐야?파이썬 실행, 그게 뭐야?May 14, 2025 am 12:06 AM

pythonexecutionissprocessoftransformingpythoncodeintoExecutableInstructions.1) the -interreadsTheCode, ConvertingItintoByTecode, thethepythonVirtualMachine (pvm)을 실행합니다

파이썬 : 주요 기능은 무엇입니까?파이썬 : 주요 기능은 무엇입니까?May 14, 2025 am 12:02 AM

Python의 주요 특징은 다음과 같습니다. 1. 구문은 간결하고 이해하기 쉽고 초보자에게 적합합니다. 2. 개발 속도 향상, 동적 유형 시스템; 3. 여러 작업을 지원하는 풍부한 표준 라이브러리; 4. 광범위한 지원을 제공하는 강력한 지역 사회와 생태계; 5. 스크립팅 및 빠른 프로토 타이핑에 적합한 해석; 6. 다양한 프로그래밍 스타일에 적합한 다중-파라 디그 지원.

파이썬 : 컴파일러 또는 통역사?파이썬 : 컴파일러 또는 통역사?May 13, 2025 am 12:10 AM

Python은 해석 된 언어이지만 편집 프로세스도 포함됩니다. 1) 파이썬 코드는 먼저 바이트 코드로 컴파일됩니다. 2) 바이트 코드는 Python Virtual Machine에 의해 해석되고 실행됩니다. 3)이 하이브리드 메커니즘은 파이썬이 유연하고 효율적이지만 완전히 편집 된 언어만큼 빠르지는 않습니다.

루프 대 루프를위한 파이썬 : 루프시기는 언제 사용해야합니까?루프 대 루프를위한 파이썬 : 루프시기는 언제 사용해야합니까?May 13, 2025 am 12:07 AM

USEAFORLOOPHENTERATINGOVERASERASERASPECIFICNUMBEROFTIMES; USEAWHILLOOPWHENTINUTIMONDITINISMET.FORLOOPSAREIDEALFORKNOWNSEDINGENCENCENS, WHILEWHILELOOPSSUITSITUATIONS WITHERMINGEDERITERATIONS.

파이썬 루프 : 가장 일반적인 오류파이썬 루프 : 가장 일반적인 오류May 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrors likeinfiniteloops, modifyinglistsdizeration, off-by-by-byerrors, zero-indexingissues, andnestedloopineficiencies.toavoidthese : 1) aing'i

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

안전한 시험 브라우저

안전한 시험 브라우저

안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

Dreamweaver Mac版

Dreamweaver Mac版

시각적 웹 개발 도구

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음