uv를 사용하면 GitHub Actions에서 린팅과 테스트를 약 1.5배 빠르게 수행할 수 있습니다.
린팅
린팅을 위해 사전 커밋을 사용하는 경우:
name: Lint on: [push, pull_request, workflow_dispatch] env: FORCE_COLOR: 1 permissions: contents: read jobs: lint: runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 with: persist-credentials: false - uses: actions/setup-python@v5 with: python-version: "3.x" cache: pip - uses: pre-commit/action@v3.0.1
pre-commit/action을 tox-dev/action-pre-commit-uv로 대체할 수 있습니다.
- uses: actions/setup-python@v5 with: python-version: "3.x" - cache: pip - - uses: pre-commit/action@v3.0.1 + - uses: tox-dev/action-pre-commit-uv@v1
name: Lint on: [push, pull_request, workflow_dispatch] env: FORCE_COLOR: 1 permissions: contents: read jobs: lint: runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 with: persist-credentials: false - uses: actions/setup-python@v5 with: python-version: "3.x" - uses: tox-dev/action-pre-commit-uv@v1
이는 uv가 가상 환경을 생성하고 사전 커밋을 위한 패키지를 설치한다는 의미이며, 이는 캐시가 없을 때 초기 시드 작업의 속도가 더 빠릅니다.
린트 비교
예: python/blurb#32
Before | After | Times faster | |
---|---|---|---|
No cache | 60s | 37s | 1.62 |
With cache | 11s | 11s | 1.00 |
테스트
Tox로 테스트할 때:
name: Test on: [push, pull_request, workflow_dispatch] permissions: contents: read env: FORCE_COLOR: 1 jobs: test: runs-on: ubuntu-latest strategy: fail-fast: false matrix: python-version: ["3.9", "3.10", "3.11", "3.12", "3.13", "3.14"] steps: - uses: actions/checkout@v4 with: persist-credentials: false - name: Set up Python ${{ matrix.python-version }} uses: actions/setup-python@v5 with: python-version: ${{ matrix.python-version }} allow-prereleases: true cache: pip - name: Install dependencies run: | python --version python -m pip install -U pip python -m pip install -U tox - name: Tox tests run: | tox -e py
tox를 tox-uv로 대체할 수 있습니다.
- name: Set up Python ${{ matrix.python-version }} uses: actions/setup-python@v5 with: python-version: ${{ matrix.python-version }} allow-prereleases: true - cache: pip - - name: Install dependencies - run: | - python --version - python -m pip install -U pip - python -m pip install -U tox + - name: Install uv + uses: hynek/setup-cached-uv@v2 - name: Tox tests run: | - tox -e py + uvx --with tox-uv tox -e py
name: Test on: [push, pull_request, workflow_dispatch] permissions: contents: read env: FORCE_COLOR: 1 jobs: test: runs-on: ubuntu-latest strategy: fail-fast: false matrix: python-version: ["3.9", "3.10", "3.11", "3.12", "3.13"] steps: - uses: actions/checkout@v4 with: persist-credentials: false - name: Set up Python ${{ matrix.python-version }} uses: actions/setup-python@v5 with: python-version: ${{ matrix.python-version }} allow-prereleases: true - name: Install uv uses: hynek/setup-cached-uv@v2 - name: Tox tests run: | uvx --with tox-uv tox -e py
tox-uv는 tox 환경에서 virtualenv 및 pip를 uv로 대체하는 tox 플러그인입니다. tox, 가상 환경 및 그 내의 종속성을 더 빠르게 설치하려면 uv를 설치하고 uvx를 사용하여 tox-uv를 설치하고 tox를 실행하면 됩니다.
테스트 비교
예: python/blurb#32
Before | After | Times faster | |
---|---|---|---|
No cache | 2m 0s | 1m 26s | 1.40 |
With cache | 1m 58s | 1m 22s | 1.44 |
보너스 팁
GitHub Actions에서 보안 문제를 찾으려면 새로운 도구인 zizmor를 실행하세요.
헤더 사진: Olympia-Kuva Oy 및 헬싱키 시립 박물관, 공개 도메인의 "1952년 헬싱키 올림픽 로드 사이클링"
위 내용은 uv로 CI 속도 향상 ⚡의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python에는 두 개의 목록을 연결하는 방법이 많이 있습니다. 1. 연산자 사용 간단하지만 큰 목록에서는 비효율적입니다. 2. 효율적이지만 원래 목록을 수정하는 확장 방법을 사용하십시오. 3. 효율적이고 읽기 쉬운 = 연산자를 사용하십시오. 4. 메모리 효율적이지만 추가 가져 오기가 필요한 itertools.chain function을 사용하십시오. 5. 우아하지만 너무 복잡 할 수있는 목록 구문 분석을 사용하십시오. 선택 방법은 코드 컨텍스트 및 요구 사항을 기반으로해야합니다.

Python 목록을 병합하는 방법에는 여러 가지가 있습니다. 1. 단순하지만 큰 목록에 대한 메모리 효율적이지 않은 연산자 사용; 2. 효율적이지만 원래 목록을 수정하는 확장 방법을 사용하십시오. 3. 큰 데이터 세트에 적합한 itertools.chain을 사용하십시오. 4. 사용 * 운영자, 한 줄의 코드로 중소형 목록을 병합하십시오. 5. Numpy.concatenate를 사용하십시오. 이는 고성능 요구 사항이있는 대규모 데이터 세트 및 시나리오에 적합합니다. 6. 작은 목록에 적합하지만 비효율적 인 Append Method를 사용하십시오. 메소드를 선택할 때는 목록 크기 및 응용 프로그램 시나리오를 고려해야합니다.

CompiledLanguagesOfferSpeedSecurity, while InterpretedLanguagesProvideeaseofusEandportability

Python에서, for 루프는 반복 가능한 물체를 가로 지르는 데 사용되며, 조건이 충족 될 때 반복적으로 작업을 수행하는 데 사용됩니다. 1) 루프 예제 : 목록을 가로 지르고 요소를 인쇄하십시오. 2) 루프 예제 : 올바르게 추측 할 때까지 숫자 게임을 추측하십시오. 마스터 링 사이클 원리 및 최적화 기술은 코드 효율성과 안정성을 향상시킬 수 있습니다.

목록을 문자열로 연결하려면 Python의 join () 메소드를 사용하는 것이 최선의 선택입니다. 1) join () 메소드를 사용하여 목록 요소를 ''.join (my_list)과 같은 문자열로 연결하십시오. 2) 숫자가 포함 된 목록의 경우 연결하기 전에 맵 (str, 숫자)을 문자열로 변환하십시오. 3) ','. join (f '({fruit})'forfruitinfruits와 같은 복잡한 형식에 발전기 표현식을 사용할 수 있습니다. 4) 혼합 데이터 유형을 처리 할 때 MAP (str, mixed_list)를 사용하여 모든 요소를 문자열로 변환 할 수 있도록하십시오. 5) 큰 목록의 경우 ''.join (large_li

PythonuseSahybrideactroach, combingingcompytobytecodeandingretation.1) codeiscompiledToplatform-IndependentBecode.2) bytecodeistredbythepythonvirtonmachine, enterancingefficiency andportability.

"for"and "while"loopsare : 1) "에 대한"loopsareIdealforitertatingOverSorkNowniterations, whide2) "weekepindiTeRations.Un

Python에서는 다양한 방법을 통해 목록을 연결하고 중복 요소를 관리 할 수 있습니다. 1) 연산자를 사용하거나 ()을 사용하여 모든 중복 요소를 유지합니다. 2) 세트로 변환 한 다음 모든 중복 요소를 제거하기 위해 목록으로 돌아가지 만 원래 순서는 손실됩니다. 3) 루프 또는 목록 이해를 사용하여 세트를 결합하여 중복 요소를 제거하고 원래 순서를 유지하십시오.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.