Pandas 데이터 프레임에서 셀을 여러 행으로 분할
Pandas는 쉼표로 구분된 여러 값이 포함된 셀을 분할하는 기능을 포함하여 데이터 조작을 위한 포괄적인 도구를 제공합니다. 여러 행으로. 이 가이드에서는 pandas 버전에 따라 두 가지 접근 방식을 사용하여 이를 달성하는 방법을 살펴보겠습니다.
pandas >= 0.25
pandas 버전 0.25 이상의 경우 다음 조합을 사용할 수 있습니다. Apply, str.split 및 Series.explode를 사용하여 원하는 결과를 얻을 수 있습니다. 코드 조각은 다음과 같습니다.
<code class="python">(df.set_index(['order_id', 'order_date']) .apply(lambda x: x.str.split(',').explode()) .reset_index()) </code>
설명:
- set_index(['order_id', 'order_date']): order_id 및 order_date 열을 설정합니다. 후속 작업 중에 보존하기 위한 인덱스로 사용됩니다.
- apply(lambda x: x.str.split(',').explode()): 각 행에 람다 함수를 적용합니다. 쉼표 구분 기호로 셀 값(패키지 및 패키지_코드)을 분할하고 결과 목록을 여러 행으로 분해합니다.
- reset_index(): 인덱스를 재설정하여 분해된 값을 별도의 행으로 사용하여 새 DataFrame을 생성합니다.
pandas
pandas 버전 0.24 이하의 경우 stack, unstack 및 str.split과 관련된 보다 복잡한 접근 방식이 필요합니다.
<code class="python">(df.set_index(['order_date', 'order_id']) .stack() .str.split(',', expand=True) .stack() .unstack(-2) .reset_index(-1, drop=True) .reset_index() )</code>
설명:
- 이전 접근 방식과 유사하게 set_index는 order_date 및 order_id를 인덱스로 설정합니다.
- stack()은 행을 축소하고 행을 스택으로 쌓습니다. 단일 열.
- str.split(',', Expand=True)은 결합된 값을 쉼표 구분 기호를 기준으로 여러 열로 분할합니다.
- stack()은 열을 쌓아 단일 열을 만듭니다.
- unstack(-2)는 마지막 두 번째 수준에서 DataFrame의 스택을 해제하여 분할 값이 포함된 행을 생성합니다.
- reset_index(-1, drop=True)는 추가 수준을 제거합니다.
- reset_index()는 새 DataFrame을 생성하기 위해 새 인덱스를 추가합니다.
두 메서드 모두 그림과 같이 분해된 값이 별도의 행으로 포함된 새 DataFrame을 반환합니다. 귀하가 제공한 원하는 출력.
위 내용은 Pandas DataFrame에서 쉼표로 구분된 셀을 여러 행으로 어떻게 분할할 수 있나요?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python의 실제 응용 프로그램에는 데이터 분석, 웹 개발, 인공 지능 및 자동화가 포함됩니다. 1) 데이터 분석에서 Python은 Pandas 및 Matplotlib를 사용하여 데이터를 처리하고 시각화합니다. 2) 웹 개발에서 Django 및 Flask 프레임 워크는 웹 응용 프로그램 생성을 단순화합니다. 3) 인공 지능 분야에서 Tensorflow와 Pytorch는 모델을 구축하고 훈련시키는 데 사용됩니다. 4) 자동화 측면에서 파이썬 스크립트는 파일 복사와 같은 작업에 사용할 수 있습니다.

Python은 데이터 과학, 웹 개발 및 자동화 스크립팅 필드에 널리 사용됩니다. 1) 데이터 과학에서 Python은 Numpy 및 Pandas와 같은 라이브러리를 통해 데이터 처리 및 분석을 단순화합니다. 2) 웹 개발에서 Django 및 Flask 프레임 워크를 통해 개발자는 응용 프로그램을 신속하게 구축 할 수 있습니다. 3) 자동 스크립트에서 Python의 단순성과 표준 라이브러리가 이상적입니다.

Python의 유연성은 다중 파리가 지원 및 동적 유형 시스템에 반영되며, 사용 편의성은 간단한 구문 및 풍부한 표준 라이브러리에서 나옵니다. 유연성 : 객체 지향, 기능 및 절차 프로그래밍을 지원하며 동적 유형 시스템은 개발 효율성을 향상시킵니다. 2. 사용 편의성 : 문법은 자연 언어에 가깝고 표준 라이브러리는 광범위한 기능을 다루며 개발 프로세스를 단순화합니다.

Python은 초보자부터 고급 개발자에 이르기까지 모든 요구에 적합한 단순성과 힘에 호의적입니다. 다목적 성은 다음과 같이 반영됩니다. 1) 배우고 사용하기 쉽고 간단한 구문; 2) Numpy, Pandas 등과 같은 풍부한 라이브러리 및 프레임 워크; 3) 다양한 운영 체제에서 실행할 수있는 크로스 플랫폼 지원; 4) 작업 효율성을 향상시키기위한 스크립팅 및 자동화 작업에 적합합니다.

예, 하루에 2 시간 후에 파이썬을 배우십시오. 1. 합리적인 학습 계획 개발, 2. 올바른 학습 자원을 선택하십시오. 3. 실습을 통해 학습 된 지식을 통합하십시오. 이 단계는 짧은 시간 안에 Python을 마스터하는 데 도움이 될 수 있습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구
