Pandas DataFrame: 조건에 따른 대상 값 교체
Pandas에서는 특정 기준에 따라 DataFrame 내의 특정 값을 수정해야 하는 경우가 많습니다. . 일반적인 접근 방식은 loc를 사용하여 행을 선택하는 것이지만 값 수정을 위해 특정 열을 정확하게 대상으로 지정하는 방법을 이해하는 것이 중요합니다.
'첫 번째 시즌'에서 값을 바꾸려는 다음 DataFrame을 고려하세요. 정수 1로 1990을 초과하는 열:
Team First Season Total Games 0 Dallas Cowboys 1960 894 1 Chicago Bears 1920 1357 2 Green Bay Packers 1921 1339 3 Miami Dolphins 1966 792 4 Baltimore Ravens 1996 326 5 San Franciso 49ers 1950 1003
loc 함수만 사용한 초기 시도에서는 대상 열만 바꾸는 것이 아니라 선택한 행의 모든 값을 바꾸는 결과가 나왔습니다. 이를 수정하려면 '첫 번째 시즌' 열을 loc의 두 번째 인수로 명시적으로 지정해야 합니다.
df.loc[df['First Season'] > 1990, 'First Season'] = 1
이 타겟 접근 방식은 '첫 번째 시즌' 열의 값만 조건을 충족하도록 보장합니다. 1로 대체되고 다른 열은 영향을 받지 않습니다.
Team First Season Total Games 0 Dallas Cowboys 1960 894 1 Chicago Bears 1920 1357 2 Green Bay Packers 1921 1339 3 Miami Dolphins 1966 792 4 Baltimore Ravens 1 326 5 San Franciso 49ers 1950 1003
또는 원하는 결과가 부울 표시기인 경우 조건을 사용하여 부울 시리즈를 생성하고 이를 정수로 변환할 수 있습니다. 여기서 True 및 False 각각 1과 0으로 변환:
df['First Season'] = (df['First Season'] > 1990).astype(int)
이 접근 방식은 업데이트된 값을 가진 DataFrame을 생성합니다.
Team First Season Total Games 0 Dallas Cowboys 0 894 1 Chicago Bears 0 1357 2 Green Bay Packers 0 1339 3 Miami Dolphins 0 792 4 Baltimore Ravens 1 326 5 San Franciso 49ers 0 1003
위 내용은 조건에 따라 Pandas DataFrame 열의 특정 값을 바꾸는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음
