여러 데이터프레임에 대한 클러스터형 누적 막대 차트 생성
문제 설명
동일한 열과 인덱스가 있는 여러 데이터프레임을 처리할 때 다음을 수행하는 것이 바람직할 수 있습니다. 클러스터형 누적 막대 차트를 만들어 데이터를 시각화합니다. 각 데이터프레임에 대한 막대를 해당 인덱스별로 그룹화하여 별도로 쌓으려고 할 때 문제가 발생합니다.
Pandas 및 Matplotlib를 사용한 솔루션
Pandas와 Matplotlib의 조합을 사용하면 이를 달성할 수 있습니다. 막대 직사각형의 위치와 해칭 패턴을 수동으로 조정합니다. 자세한 솔루션은 다음과 같습니다.
<code class="python">import pandas as pd import numpy as np import matplotlib.pyplot as plt def plot_clustered_stacked(dfall, labels=None, title="multiple stacked bar plot", H="/" , **kwargs): n_df = len(dfall) n_col = len(dfall[0].columns) n_ind = len(dfall[0].index) axe = plt.subplot(111) for df in dfall: # for each data frame axe = df.plot(kind="bar", linewidth=0, stacked=True, ax=axe, legend=False, grid=False, **kwargs) # make bar plots h, l = axe.get_legend_handles_labels() # get the handles we want to modify for i in range(0, n_df * n_col, n_col): # len(h) = n_col * n_df for j, pa in enumerate(h[i:i+n_col]): for rect in pa.patches: # for each index rect.set_x(rect.get_x() + 1 / float(n_df + 1) * i / float(n_col)) rect.set_hatch(H * int(i / n_col)) #edited part rect.set_width(1 / float(n_df + 1)) axe.set_xticks((np.arange(0, 2 * n_ind, 2) + 1 / float(n_df + 1)) / 2.) axe.set_xticklabels(df.index, rotation = 0) axe.set_title(title) # Add invisible data to add another legend n=[] for i in range(n_df): n.append(axe.bar(0, 0, color="gray", hatch=H * i)) l1 = axe.legend(h[:n_col], l[:n_col], loc=[1.01, 0.5]) if labels is not None: l2 = plt.legend(n, labels, loc=[1.01, 0.1]) axe.add_artist(l1) return axe</code>
Seaborn을 사용한 솔루션
Seaborn의 막대 그래프 기능을 사용하면 누적 막대 차트를 만들 수 있지만 기본적으로 다양한 데이터 프레임에 대한 막대를 누적할 수는 없습니다. 이 문제를 극복하기 위해 다음 해결 방법을 사용할 수 있습니다.
- pd.melt()를 사용하여 데이터프레임을 "정돈된" 형식으로 변환합니다.
- 다음을 사용하여 각 막대의 누적 합계를 계산합니다. groupby 및 cumsum()을 사용하여 vcs라는 새 열을 만듭니다.
- 변수 그룹을 반복하고 sns.barplot()을 사용하여 누적 합계를 그립니다.
<code class="python">import seaborn as sns # Convert dataframes to tidy format dfall.set_index(["Name", "index", "variable"], inplace=1) dfall["vcs"] = dfall.groupby(level=["Name", "index"]).cumsum() dfall.reset_index(inplace=True) # Create color palette c = ["blue", "purple", "red", "green", "pink"] # Iterate through groups and plot stacked bars for i, g in enumerate(dfall.groupby("variable")): ax = sns.barplot(data=g[1], x="index", y="vcs",</code>
위 내용은 Python에서 여러 DataFrame에 대한 클러스터형 누적 막대 차트를 만드는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python 3.6에 피클 파일로드 3.6 환경 보고서 오류 : modulenotfounderror : nomodulename ...

경치 좋은 스팟 댓글 분석에서 Jieba Word 세분화 문제를 해결하는 방법은 무엇입니까? 경치가 좋은 스팟 댓글 및 분석을 수행 할 때 종종 Jieba Word 세분화 도구를 사용하여 텍스트를 처리합니다 ...

정규 표현식을 사용하여 첫 번째 닫힌 태그와 정지와 일치하는 방법은 무엇입니까? HTML 또는 기타 마크 업 언어를 다룰 때는 정규 표현식이 종종 필요합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

뜨거운 주제



