NaN 대 None: 면밀한 조사
Pandas에서 누락된 데이터로 작업할 때 NaN과 None의 차이점을 이해하는 것이 중요합니다. 둘 다 누락된 값을 나타내지만 데이터 분석에 영향을 미칠 수 있는 미묘한 차이가 있습니다.
NaN(Not-A-Number)은 누락된 데이터를 나타내기 위해 Pandas에서 일관되게 사용되는 특수 부동 소수점 값입니다. 이는 벡터화된 작업을 허용하고 NumPy의 float64 dtype을 사용하여 효율적으로 저장됩니다. 대조적으로 None은 빈 객체 참조를 나타내는 Python 변수입니다.
Pandas에서 None 대신 NaN을 사용하기로 한 결정은 다음과 같은 여러 요인에 따라 결정되었습니다.
누락된 데이터 확인
Pandas에서 누락된 데이터를 확인하는 적절한 방법은 isna 및 notna 함수를 사용하는 것입니다. 이러한 함수는 각각 NaN 및 None 값을 감지하도록 특별히 설계되었습니다. numpy.isnan() 함수는 숫자 데이터용이므로 문자열 변수를 확인하는 데 적합하지 않습니다.
설명하기 위해 다음 코드를 고려하세요.
<code class="python">for k, v in my_dict.iteritems(): if pd.isna(v): # Do something</code>
이 코드는 isna 함수는 사전 값에서 누락된 데이터를 확인합니다. 이는 숫자 데이터와 문자열 데이터 모두에 선호되고 권장되는 접근 방식입니다.
요약하면 NaN과 None은 각각 Pandas와 Python에서 누락된 데이터를 나타내는 데 사용됩니다. NaN은 일관성, 효율성 및 벡터화된 작업 지원으로 인해 Pandas에서 선호됩니다. Pandas에서 누락된 데이터를 안정적이고 정확하게 감지하려면 항상 isna 및 notna 기능을 사용하는 것이 좋습니다.
위 내용은 NaN 대 None: 누락된 데이터에 대해 Pandas에서 언제 어느 것을 사용해야 합니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!