Python/Pandas의 빠른 Haversine 근사치
팬더 데이터프레임. Python 루프를 사용하여 각 행을 반복하고 Haversine 공식을 적용하는 순진한 접근 방식은 수백만 행에 대해 계산 비용이 많이 들 수 있습니다. 하지만 이 프로세스를 최적화하는 것은 가능합니다.
더 빠른 계산을 달성하기 위해 NumPy를 사용하여 벡터화를 사용할 수 있습니다. NumPy는 명시적 루프를 방지하여 성능을 크게 향상시킬 수 있는 배열 기반 작업을 제공합니다. 다음은 haversine 함수의 벡터화된 NumPy 버전입니다.
<code class="python">import numpy as np def haversine_np(lon1, lat1, lon2, lat2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees). All args must be of equal length. """ lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2]) dlon = lon2 - lon1 dlat = lat2 - lat1 a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2 c = 2 * np.arcsin(np.sqrt(a)) km = 6378.137 * c return km</code>
주요 이점:
사용 예:
<code class="python">import numpy as np import pandas lon1, lon2, lat1, lat2 = np.random.randn(4, 1000000) df = pandas.DataFrame(data={'lon1':lon1,'lon2':lon2,'lat1':lat1,'lat2':lat2}) km = haversine_np(df['lon1'],df['lat1'],df['lon2'],df['lat2']) # Or, to create a new column for distances: df['distance'] = haversine_np(df['lon1'],df['lat1'],df['lon2'],df['lat2'])</code>
NumPy의 벡터화 기능을 활용하여 수백만 개의 지점 사이의 거리를 거의 즉시 계산하는 것이 가능해졌습니다. 이러한 최적화된 접근 방식은 Python/Pandas에서 지리공간 분석 작업의 효율성을 크게 향상시킬 수 있습니다.
위 내용은 Python을 사용하여 Pandas 데이터 프레임에서 수백만 개의 위도/경도 좌표 사이의 거리를 효율적으로 계산하려면 어떻게 해야 합니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!