Pandas에서 범위 조건에 따라 데이터 프레임 병합
데이터 분석 영역 내에서 여러 소스의 데이터를 결합하는 것은 일반적인 작업입니다. 데이터 조작을 위한 강력한 Python 라이브러리인 Pandas는 범위 조건을 포함하여 데이터프레임을 병합하기 위한 다양한 방법을 제공합니다. 이 기사에서는 이 특정 시나리오를 자세히 살펴보고 numpy 브로드캐스팅을 사용하는 효율적인 솔루션을 제시합니다.
문제 설명
두 개의 데이터 프레임 A와 B가 주어지면 목표는 다음을 수행하는 것입니다. 데이터 프레임 A의 값이 데이터 프레임 B에 정의된 특정 범위 내에 속하는 내부 조인. 전통적으로 이는 SQL 구문을 사용하여 달성됩니다:
<code class="sql">SELECT * FROM A, B WHERE A_value BETWEEN B_low AND B_high</code>
기존 솔루션
Pandas는 더미 열을 사용하여 더미 열을 병합한 다음 불필요한 행을 필터링하는 해결 방법을 제공합니다. 그러나 이 방법은 계산량이 많습니다. 또는 B의 각 A 값에 대해 검색 기능을 적용할 수도 있지만 이 접근 방식에도 단점이 있습니다.
Numpy Broadcasting: A Pragmatic Approach
Numpy Broadcasting은 우아하고 효율적인 솔루션. 이 기술은 벡터화를 활용하여 개별 요소가 아닌 전체 배열에 대한 계산을 수행합니다. 원하는 병합을 달성하려면:
- 데이터 프레임 A와 B에서 값을 추출합니다.
-
numpy 브로드캐스팅을 사용하여 부울 마스크를 만듭니다.
- A_value >= B_low
- A_value
- numpy의 np.where를 사용하여 마스크가 True인 인덱스를 찾습니다.
- 연결 식별된 인덱스를 기반으로 데이터 프레임 A와 B의 해당 행.
이 접근 방식은 브로드캐스팅을 활용하여 전체 A 데이터 프레임에 대한 범위 비교를 수행하므로 계산 시간과 복잡성이 크게 줄어듭니다.
예
다음 데이터프레임을 고려하세요.
<code class="python">A = pd.DataFrame(dict( A_id=range(10), A_value=range(5, 105, 10) )) B = pd.DataFrame(dict( B_id=range(5), B_low=[0, 30, 30, 46, 84], B_high=[10, 40, 50, 54, 84] ))</code>
출력:
A_id A_value B_high B_id B_low 0 0 5 10 0 0 1 3 35 40 1 30 2 3 35 50 2 30 3 4 45 50 2 30
이 출력은 성공적인 데이터 프레임을 보여줍니다. 지정된 범위 조건을 기반으로 데이터 프레임 A와 B를 병합합니다.
추가 고려 사항
왼쪽 조인을 수행하려면 데이터 프레임 A의 일치하지 않는 행을 출력에 포함합니다. 이는 numpy의 ~np.in1d를 사용하여 일치하지 않는 행을 식별하고 이를 결과에 추가함으로써 달성할 수 있습니다.
결론적으로 numpy 브로드캐스팅은 범위 조건에 따라 데이터 프레임을 병합하기 위한 강력하고 효율적인 접근 방식을 제공합니다. 벡터화 기능은 성능을 향상시켜 대규모 데이터세트에 이상적인 솔루션입니다.
위 내용은 Numpy Broadcasting을 사용하여 Pandas에서 범위 조건에 따라 DataFrame을 병합하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Tomergelistsinpython, youcanusethe operator, extendmethod, listcomprehension, oritertools.chain, 각각은 각각의 지위를 불러 일으킨다

Python 3에서는 다양한 방법을 통해 두 개의 목록을 연결할 수 있습니다. 1) 작은 목록에 적합하지만 큰 목록에는 비효율적입니다. 2) 메모리 효율이 높지만 원래 목록을 수정하는 큰 목록에 적합한 확장 방법을 사용합니다. 3) 원래 목록을 수정하지 않고 여러 목록을 병합하는 데 적합한 * 운영자 사용; 4) 메모리 효율이 높은 대형 데이터 세트에 적합한 itertools.chain을 사용하십시오.

join () 메소드를 사용하는 것은 Python의 목록에서 문자열을 연결하는 가장 효율적인 방법입니다. 1) join () 메소드를 사용하여 효율적이고 읽기 쉽습니다. 2)주기는 큰 목록에 비효율적으로 운영자를 사용합니다. 3) List Comprehension과 Join ()의 조합은 변환이 필요한 시나리오에 적합합니다. 4) READE () 방법은 다른 유형의 감소에 적합하지만 문자열 연결에 비효율적입니다. 완전한 문장은 끝납니다.

pythonexecutionissprocessoftransformingpythoncodeintoExecutableInstructions.1) the -interreadsTheCode, ConvertingItintoByTecode, thethepythonVirtualMachine (pvm)을 실행합니다

Python의 주요 특징은 다음과 같습니다. 1. 구문은 간결하고 이해하기 쉽고 초보자에게 적합합니다. 2. 개발 속도 향상, 동적 유형 시스템; 3. 여러 작업을 지원하는 풍부한 표준 라이브러리; 4. 광범위한 지원을 제공하는 강력한 지역 사회와 생태계; 5. 스크립팅 및 빠른 프로토 타이핑에 적합한 해석; 6. 다양한 프로그래밍 스타일에 적합한 다중-파라 디그 지원.

Python은 해석 된 언어이지만 편집 프로세스도 포함됩니다. 1) 파이썬 코드는 먼저 바이트 코드로 컴파일됩니다. 2) 바이트 코드는 Python Virtual Machine에 의해 해석되고 실행됩니다. 3)이 하이브리드 메커니즘은 파이썬이 유연하고 효율적이지만 완전히 편집 된 언어만큼 빠르지는 않습니다.

USEAFORLOOPHENTERATINGOVERASERASERASPECIFICNUMBEROFTIMES; USEAWHILLOOPWHENTINUTIMONDITINISMET.FORLOOPSAREIDEALFORKNOWNSEDINGENCENCENS, WHILEWHILELOOPSSUITSITUATIONS WITHERMINGEDERITERATIONS.

Pythonloopscanleadtoerrors likeinfiniteloops, modifyinglistsdizeration, off-by-by-byerrors, zero-indexingissues, andnestedloopineficiencies.toavoidthese : 1) aing'i


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)