값 범위와 식별자를 기반으로 Pandas 데이터프레임 병합
Pandas에서는 범위 기반 조건과 식별자를 사용하여 데이터프레임을 병합할 수 있습니다. 병합 및 필터링 작업의 조합을 통해. 그러나 이 접근 방식은 대규모 데이터 세트로 작업할 때 비효율적일 수 있습니다. SQL을 활용하는 대체 접근 방식은 더 나은 성능을 제공할 수 있습니다.
두 개의 데이터 프레임 A와 B가 있는 예를 생각해 보겠습니다. 데이터 프레임 A에는 날짜(fdate)와 식별자(cusip)가 포함되어 있고 데이터 프레임 B에는 날짜(namedt 및 nameenddt) 및 동일한 식별자(ncusip). 우리의 목표는 A의 fdate가 B의namedt 및 nameenddt에 의해 정의된 날짜 범위 내에 속하는 이러한 데이터 프레임을 병합하는 것입니다.
다음 Python 코드는 기존 Pandas 접근 방식을 보여줍니다.
<code class="python">df = pd.merge(A, B, how='inner', left_on='cusip', right_on='ncusip') df = df[(df['fdate']>=df['namedt']) & (df['fdate']<=df['nameenddt'])]</code>
이 접근 방식은 작동하지만 무조건 데이터 프레임을 병합한 다음 날짜 조건에 따라 필터링하므로 대규모 데이터 세트의 경우 계산 비용이 많이 들 수 있습니다.
대체 접근 방식은 SQL 쿼리를 사용하는 것입니다.
<code class="python">import pandas as pd import sqlite3 # Create a temporary database in memory conn = sqlite3.connect(':memory:') # Write the dataframes to tables A.to_sql('table_a', conn, index=False) B.to_sql('table_b', conn, index=False) # Construct the SQL query query = ''' SELECT * FROM table_a JOIN table_b ON table_a.cusip = table_b.ncusip WHERE table_a.fdate BETWEEN table_b.namedt AND table_b.nameenddt ''' # Execute the query and create a Pandas dataframe df = pd.read_sql_query(query, conn)</code>
이 접근 방식에는 여러 가지 장점이 있습니다.
결론적으로 범위 기반 조건 및 식별자를 기반으로 데이터 프레임을 병합하기 위해 SQL을 활용하면 특히 대규모 데이터 세트의 경우 기존 Pandas 작업에 비해 성능 이점을 얻을 수 있습니다.
위 내용은 값 범위와 식별자를 기반으로 Pandas 데이터프레임을 효율적으로 병합하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!