OCR(광학 문자 인식) 도구는 이미지에서 텍스트를 추출할 때 오류가 발생하는 경우가 많습니다. 이렇게 추출된 텍스트를 참조 데이터 세트와 효과적으로 일치시키려면 Spark의 효율적인 알고리즘이 필요합니다.
문자 교체, 이모티콘 생략, 공백 제거 등 OCR 추출에서 직면하는 문제를 고려할 때 포괄적인 접근 방식은 다음과 같습니다. 필요합니다. Spark의 장점을 고려하면 기계 학습 변환기의 조합을 활용하여 효율적인 솔루션을 얻을 수 있습니다.
파이프라인 접근 방식
파이프라인을 구성하여 다음 단계를 수행할 수 있습니다.
구현 예
<code class="scala">import org.apache.spark.ml.feature.{RegexTokenizer, NGram, HashingTF, MinHashLSH, MinHashLSHModel} // Input text val query = Seq("Hello there 7l | real|y like Spark!").toDF("text") // Reference data val db = Seq( "Hello there ?! I really like Spark ❤️!", "Can anyone suggest an efficient algorithm" ).toDF("text") // Create pipeline val pipeline = new Pipeline().setStages(Array( new RegexTokenizer().setPattern("").setInputCol("text").setMinTokenLength(1).setOutputCol("tokens"), new NGram().setN(3).setInputCol("tokens").setOutputCol("ngrams"), new HashingTF().setInputCol("ngrams").setOutputCol("vectors"), new MinHashLSH().setInputCol("vectors").setOutputCol("lsh") )) // Fit on reference data val model = pipeline.fit(db) // Transform both input text and reference data val db_hashed = model.transform(db) val query_hashed = model.transform(query) // Approximate similarity join model.stages.last.asInstanceOf[MinHashLSHModel] .approxSimilarityJoin(db_hashed, query_hashed, 0.75).show</code>
이 접근 방식은 OCR 텍스트 추출 문제를 효과적으로 처리하고 추출된 텍스트를 Spark의 대규모 데이터 세트와 일치시키는 효율적인 방법을 제공합니다.
위 내용은 OCR을 사용하여 이미지에서 추출된 텍스트를 효율적으로 문자열 일치시키고 확인하는 데 Apache Spark를 어떻게 사용할 수 있습니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!