양식 또는 JSON 본문을 수용할 수 있는 FastAPI 엔드포인트를 생성하는 방법은 무엇입니까?
FastAPI에서는 다음과 같은 다양한 유형의 요청 본문을 처리하는 엔드포인트를 정의할 수 있습니다. JSON 또는 양식 데이터. 이를 통해 별도의 엔드포인트 없이 두 형식 중 하나를 허용할 수 있는 엔드포인트를 생성할 수 있습니다.
이를 달성하려면 아래 접근 방식 중 하나를 따를 수 있습니다.
옵션 1: 종속성 기능 사용
종속성 기능을 활용하여 요청의 Content-Type 헤더를 확인한 다음 Starlette의 메서드를 사용하여 본문을 적절하게 구문 분석할 수 있습니다. Content-Type 헤더에만 의존하면 요청 본문의 유효성이 항상 보장되지 않을 수 있으므로 오류 처리를 포함하는 것이 좋습니다.
<code class="python">import os, sys from fastapi import FastAPI, Depends, HTTPException from starlette.requests import Request app = FastAPI() # Generating file open("./app.txt", "w").write("hello from a file") async def body_parser(request: Request): ct = request.headers.get("Content-Type", "") if ct == "application/json": try: d = await request.json() if not isinstance(d, dict): raise HTTPException(status_code=400, details={"error":"request body must be a dict"}) return d except JSONDecodeError: raise HTTPException(400, "Could not parse request body as JSON") elif ct == "multipart/form-data": await request.stream() # this is required for body parsing. d = await request.form() if not d: raise HTTPException(status_code=400, details={"error":"no form parameters found"}) return d else: raise HTTPException(405, "Content-Type must be either JSON or multipart/form-data") @app.post("/", dependencies=[Depends(body_parser)]) async def body_handler(d: dict): if "file" in d: return {"file": d["file"]} return d</code>
옵션 2: 선택적 양식/파일 매개변수 활용
이 접근 방식에서는 엔드포인트에서 양식/파일 매개변수를 선택 사항으로 정의할 수 있습니다. 이러한 매개변수 중 하나에 값이 있으면 양식 데이터 요청으로 간주됩니다. 그렇지 않으면 요청 본문을 JSON으로 검증합니다.
<code class="python">from fastapi import FastAPI, Form, File, UploadFile app = FastAPI() @app.post("/") async def file_or_json( files: List[UploadFile] = File(None), some_data: str = Form(None) ): if files: return {"files": len(files)} return {"data": some_data}</code>
옵션 3: 각 유형에 대해 별도의 엔드포인트 정의
또한 JSON용 엔드포인트와 양식 데이터용 엔드포인트로 별도의 엔드포인트를 생성할 수도 있습니다. . 미들웨어를 사용하면 Content-Type 헤더를 확인하고 요청을 적절한 엔드포인트로 다시 라우팅할 수 있습니다.
<code class="python">from fastapi import FastAPI, Request, Form, File, UploadFile from fastapi.responses import JSONResponse app = FastAPI() @app.middleware("http") async def middleware(request: Request, call_next): ct = request.headers.get("Content-Type", "") if ct == "application/json": request.scope["path"] = "/json" elif ct in ["multipart/form-data", "application/x-www-form-urlencoded"]: request.scope["path"] = "/form" return await call_next(request) @app.post("/json") async def json_endpoint(json_data: dict): pass @app.post("/form") async def form_endpoint(file: UploadFile = File(...)): pass</code>
옵션 4: 대체 접근 방식에 대한 다른 답변 참조
또한 다음을 수행할 수 있습니다. Stack Overflow에서 이 답변은 단일 엔드포인트에서 JSON과 양식 데이터를 모두 처리하는 데 다른 관점을 제공하므로 도움이 됩니다.
https://stackoverflow.com/a/67003163/10811840
테스트 옵션 1, 2, 3
테스트 목적으로 요청 라이브러리를 사용할 수 있습니다.
<code class="python">import requests url = "http://127.0.0.1:8000" # for testing Python 3.7 and above use: # url = "http://localhost:8000" # form-data request files = [('files', ('a.txt', open('a.txt', 'rb'), 'text/plain'))] response = requests.post(url, files=files) print(response.text) # JSON request data = {"some_data": "Hello, world!"} response = requests.post(url, json=data) print(response.text)</code>
이러한 접근 방식은 JSON과 양식을 모두 처리할 수 있는 엔드포인트를 생성하는 다양한 방법을 제공합니다. -FastAPI의 데이터. 귀하의 요구 사항과 사용 사례에 가장 적합한 접근 방식을 선택하세요.
위 내용은 양식이나 JSON 본문을 허용하는 FastAPI 끝점을 만드는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

이 튜토리얼은 Python을 사용하여 Zipf의 법칙의 통계 개념을 처리하는 방법을 보여주고 법을 처리 할 때 Python의 읽기 및 대형 텍스트 파일을 정렬하는 효율성을 보여줍니다. ZIPF 분포라는 용어가 무엇을 의미하는지 궁금 할 것입니다. 이 용어를 이해하려면 먼저 Zipf의 법칙을 정의해야합니다. 걱정하지 마세요. 지침을 단순화하려고 노력할 것입니다. Zipf의 법칙 Zipf의 법칙은 단순히 : 큰 자연어 코퍼스에서 가장 자주 발생하는 단어는 두 번째 빈번한 단어, 세 번째 빈번한 단어보다 세 번, 네 번째 빈번한 단어 등 4 배나 자주 발생합니다. 예를 살펴 보겠습니다. 미국 영어로 브라운 코퍼스를 보면 가장 빈번한 단어는 "TH입니다.

Python은 인터넷에서 파일을 다운로드하는 다양한 방법을 제공하며 Urllib 패키지 또는 요청 도서관을 사용하여 HTTP를 통해 다운로드 할 수 있습니다. 이 튜토리얼은 이러한 라이브러리를 사용하여 Python의 URL에서 파일을 다운로드하는 방법을 설명합니다. 도서관을 요청합니다 요청은 Python에서 가장 인기있는 라이브러리 중 하나입니다. URL에 쿼리 문자열을 수동으로 추가하지 않고 HTTP/1.1 요청을 보낼 수 있습니다. 요청 라이브러리는 다음을 포함하여 많은 기능을 수행 할 수 있습니다. 양식 데이터 추가 다중 부문 파일을 추가하십시오 파이썬 응답 데이터에 액세스하십시오 요청하십시오 머리

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

시끄러운 이미지를 다루는 것은 특히 휴대폰 또는 저해상도 카메라 사진에서 일반적인 문제입니다. 이 튜토리얼은 OpenCV를 사용 하여이 문제를 해결하기 위해 Python의 이미지 필터링 기술을 탐구합니다. 이미지 필터링 : 강력한 도구 이미지 필터

PDF 파일은 운영 체제, 읽기 장치 및 소프트웨어 전체에서 일관된 콘텐츠 및 레이아웃과 함께 크로스 플랫폼 호환성에 인기가 있습니다. 그러나 Python Processing Plain Text 파일과 달리 PDF 파일은 더 복잡한 구조를 가진 이진 파일이며 글꼴, 색상 및 이미지와 같은 요소를 포함합니다. 다행히도 Python의 외부 모듈로 PDF 파일을 처리하는 것은 어렵지 않습니다. 이 기사는 PYPDF2 모듈을 사용하여 PDF 파일을 열고 페이지를 인쇄하고 텍스트를 추출하는 방법을 보여줍니다. PDF 파일의 생성 및 편집에 대해서는 저의 다른 튜토리얼을 참조하십시오. 준비 핵심은 외부 모듈 PYPDF2를 사용하는 데 있습니다. 먼저 PIP를 사용하여 설치하십시오. PIP는 p입니다

이 튜토리얼은 Redis 캐싱을 활용하여 특히 Django 프레임 워크 내에서 Python 응용 프로그램의 성능을 향상시키는 방법을 보여줍니다. 우리는 Redis 설치, Django 구성 및 성능 비교를 다루어 Bene을 강조합니다.

NLP (Natural Language Processing)는 인간 언어의 자동 또는 반자동 처리입니다. NLP는 언어학과 밀접한 관련이 있으며인지 과학, 심리학, 생리학 및 수학에 대한 연구와 관련이 있습니다. 컴퓨터 과학에서

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

Dreamweaver Mac版
시각적 웹 개발 도구

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.
