Pandas DataFrame에서 새 열을 생성하는 데 Pandas Apply 또는 NumPy Vectorize 중 어떤 방법이 더 빠릅니까?
Pandas Apply와 열 생성을 위한 NumPy 벡터화의 성능 고려 사항
Pandas Apply가 널리 사용되지만 생성 시 성능은 NumPy 벡터화보다 뒤떨어집니다. 기존 열의 새 열. 이러한 차이는 적용 함수가 상당한 오버헤드를 발생시키는 Python 수준 루프라는 사실에 기인합니다. 반면 벡터화는 입력 함수를 범용 함수로 변환하여 효율성을 크게 향상시킵니다.
성능 벤치마크
Python 수준 루프를 비교하고 raw=True로 적용하면 관찰:
- zip을 사용한 지도, 목록 이해 및 벡터화는 유사한 성능을 나타냅니다.
- apply with raw=True는 raw=True가 없는 것보다 훨씬 빠릅니다.
진정한 벡터화
그러나 적용과 벡터화 모두 NumPy 배열에서 요소별로 계산을 수행하는 np.where와 같은 진정한 벡터화 작업에 의해 가려집니다. 이 접근 방식은 훨씬 더 빨라서 루프가 필요하지 않습니다.
추가 성능 고려 사항
중요한 병목 현상이 있는 경우 Python 함수를 고도로 최적화된 C로 컴파일하는 도구인 numba를 고려하세요. 암호. numba를 사용하면 계산 속도가 더욱 빨라질 수 있습니다.
결론
기존 열에서 새 열을 생성할 때 NumPy 벡터화는 기본 벡터화로 인해 Pandas 적용에 비해 우수한 성능을 제공합니다. 능력. 최적의 효율성을 위해서는 해당되는 경우 실제 벡터화를 사용해야 합니다.
위 내용은 Pandas DataFrame에서 새 열을 생성하는 데 Pandas Apply 또는 NumPy Vectorize 중 어떤 방법이 더 빠릅니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python 3.6에 피클 파일로드 3.6 환경 보고서 오류 : modulenotfounderror : nomodulename ...

경치 좋은 스팟 댓글 분석에서 Jieba Word 세분화 문제를 해결하는 방법은 무엇입니까? 경치가 좋은 스팟 댓글 및 분석을 수행 할 때 종종 Jieba Word 세분화 도구를 사용하여 텍스트를 처리합니다 ...


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기
