>웹 프론트엔드 >JS 튜토리얼 >브라우저 렌더링 최적화로 인해 결과가 좋지 않음에도 불구하고 HTML5 캔버스를 사용하여 고품질 이미지 축소를 어떻게 달성할 수 있습니까?

브라우저 렌더링 최적화로 인해 결과가 좋지 않음에도 불구하고 HTML5 캔버스를 사용하여 고품질 이미지 축소를 어떻게 달성할 수 있습니까?

Susan Sarandon
Susan Sarandon원래의
2024-10-25 12:47:02588검색

How can I achieve high-quality image downscaling using HTML5 canvas, despite browser rendering optimizations leading to poor results?

HTML5 캔버스: 고품질로 이미지 축소

문제: HTML5 캔버스를 사용하여 이미지 크기를 축소하면 품질이 낮아집니다. 이미지 렌더링 최적화를 활성화했음에도 불구하고 출력됩니다.

해결책:

HTML5 캔버스에서 이미지 크기를 축소하려면 원본 이미지의 여러 픽셀을 크기가 조정된 이미지의 단일 픽셀로 변환해야 합니다. 브라우저의 일반적인 축소 기술은 이 프로세스를 비효율적으로 처리하여 세부 정보 손실과 노이즈로 이어집니다.

고품질 축소를 달성하려면 대상에 대한 모든 소스 픽셀의 기여도를 정확하게 계산하는 완벽한 픽셀 알고리즘을 사용하는 것이 좋습니다. pixel.

알고리즘:

<code class="javascript">// scales the canvas by (float) scale < 1
// returns a new canvas containing the scaled image.
function downScaleCanvas(cv, scale) {
    if (!(scale < 1) || !(scale > 0)) 
        throw ('scale must be a positive number <1 ');

    var sqScale = scale * scale; // square scale = area of source pixel within target
    var sw = cv.width; // source image width
    var sh = cv.height; // source image height
    var tw = Math.floor(sw * scale); // target image width
    var th = Math.floor(sh * scale); // target image height
    var sx = 0, sy = 0, sIndex = 0; // source x,y, index within source array
    var tx = 0, ty = 0, yIndex = 0, tIndex = 0; // target x,y, x,y index within target array
    var tX = 0, tY = 0; // rounded tx, ty
    var w = 0, nw = 0, wx = 0, nwx = 0, wy = 0, nwy = 0; // weight / next weight x / y
    // weight is weight of current source point within target.
    // next weight is weight of current source point within next target's point.
    var crossX = false; // does scaled px cross its current px right border ?
    var crossY = false; // does scaled px cross its current px bottom border ?
    var sBuffer = cv.getContext('2d').
        getImageData(0, 0, sw, sh).data; // source buffer 8 bit rgba
    var tBuffer = new Float32Array(3 * tw * th); // target buffer Float32 rgb
    var sR = 0, sG = 0,  sB = 0; // source's current point r,g,b

    for (sy = 0; sy < sh; sy++) {
        ty = sy * scale; // y src position within target
        tY = 0 | ty;     // rounded : target pixel's y
        yIndex = 3 * tY * tw;  // line index within target array
        crossY = (tY != (0 | ty + scale)); 
        if (crossY) { // if pixel is crossing botton target pixel
            wy = (tY + 1 - ty); // weight of point within target pixel
            nwy = (ty + scale - tY - 1); // ... within y+1 target pixel
        }
        for (sx = 0; sx < sw; sx++, sIndex += 4) {
            tx = sx * scale; // x src position within target
            tX = 0 |  tx;    // rounded : target pixel's x
            tIndex = yIndex + tX * 3; // target pixel index within target array
            crossX = (tX != (0 | tx + scale));
            if (crossX) { // if pixel is crossing target pixel's right
                wx = (tX + 1 - tx); // weight of point within target pixel
                nwx = (tx + scale - tX - 1); // ... within x+1 target pixel
            }
            sR = sBuffer[sIndex    ];   // retrieving r,g,b for curr src px.
            sG = sBuffer[sIndex + 1];
            sB = sBuffer[sIndex + 2];

            if (!crossX && !crossY) { // pixel does not cross
                // just add components weighted by squared scale.
                tBuffer[tIndex    ] += sR * sqScale;
                tBuffer[tIndex + 1] += sG * sqScale;
                tBuffer[tIndex + 2] += sB * sqScale;
            } else if (crossX && !crossY) { // cross on X only
                w = wx * scale;
                // add weighted component for current px
                tBuffer[tIndex    ] += sR * w;
                tBuffer[tIndex + 1] += sG * w;
                tBuffer[tIndex + 2] += sB * w;
                // add weighted component for next (tX+1) px                
                nw = nwx * scale
                tBuffer[tIndex + 3] += sR * nw;
                tBuffer[tIndex + 4] += sG * nw;
                tBuffer[tIndex + 5] += sB * nw;
            } else if (crossY && !crossX) { // cross on Y only
                w = wy * scale;
                // add weighted component for current px
                tBuffer[tIndex    ] += sR * w;
                tBuffer[tIndex + 1] += sG * w;
                tBuffer[tIndex + 2] += sB * w;
                // add weighted component for next (tY+1) px                
                nw = nwy * scale
                tBuffer[tIndex + 3 * tw    ] += sR * nw;
                tBuffer[tIndex + 3 * tw + 1] += sG * nw;
                tBuffer[tIndex + 3 * tw + 2] += sB * nw;
            } else { // crosses both x and y : four target points involved
                // add weighted component for current px
                w = wx * wy;
                tBuffer[tIndex    ] += sR * w;
                tBuffer[tIndex + 1] += sG * w;
                tBuffer[tIndex + 2] += sB * w;
                // for tX + 1; tY px
                nw = nwx * wy;
                tBuffer[tIndex + 3] += sR * nw;
                tBuffer[tIndex + 4] += sG * nw;
                tBuffer[tIndex + 5] += sB * nw;
                // for tX ; tY + 1 px
                nw = wx * nwy;
                tBuffer[tIndex + 3 * tw    ] += sR * nw;
                tBuffer[tIndex + 3 * tw + 1] += sG * nw;
                tBuffer[tIndex + 3 * tw + 2] += sB * nw;
                // for tX + 1 ; tY +1 px
                nw = nwx * nwy;
                tBuffer[tIndex + 3 * tw + 3] += sR * nw;
                tBuffer[tIndex + 3 * tw + 4] += sG * nw;
                tBuffer[tIndex + 3 * tw + 5] += sB * nw;
            }
        } // end for sx 
    } // end for sy

    // create result canvas
    var resCV = document.createElement('canvas');
    resCV.width = tw;
    resCV.height = th;
    var resCtx = resCV.getContext('2d');
    var imgRes = resCtx.getImageData(0, 0, tw, th);
    var tByteBuffer = imgRes.data;
    // convert float32 array into a UInt8Clamped Array
    var pxIndex = 0; //  
    for (sIndex = 0, tIndex = 0; pxIndex < tw * th; sIndex += 3, tIndex += 4, pxIndex++) {
        tByteBuffer[tIndex] = Math.ceil(tBuffer[sIndex]);
        tByteBuffer[tIndex + 1] = Math.ceil(tBuffer[sIndex + 1]);
        tByteBuffer[tIndex + 2] = Math.ceil(tBuffer[sIndex + 2]);
        tByteBuffer[tIndex + 3] = 255;
    }
    // writing result to canvas.
    resCtx.putImageData(imgRes, 0, 0);
    return resCV;
}</code>

추가 참고 사항:

  • 업샘플링은 1보다 큰 배율을 사용하여 동일한 알고리즘을 사용합니다.
  • 이 알고리즘은 메모리 집약적이므로 매우 큰 이미지나 실시간 애플리케이션에 적합하지 않을 수 있습니다.
  • 작은 이미지 또는 중요하지 않은 용도 경우에는 브라우저의 기본 2X 배율을 사용하거나 쌍선형 보간법을 적용하는 등의 간단한 방법으로 충분할 수 있습니다.

위 내용은 브라우저 렌더링 최적화로 인해 결과가 좋지 않음에도 불구하고 HTML5 캔버스를 사용하여 고품질 이미지 축소를 어떻게 달성할 수 있습니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명:
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.