Pandas groupby: 문자열 연결 얻기
열 중 하나에 문자열이 포함된 DataFrame으로 작업할 때 기본 sum() 함수 항상 원하는 결과를 제공하지 못할 수도 있습니다. 각 그룹의 문자열을 연결하는 것이 목표인 이러한 시나리오에서 포괄적인 설명과 솔루션은 다음과 같습니다.
다음 DataFrame을 고려하세요.
A B C 0 1 0.749065 This 1 2 0.301084 is 2 3 0.463468 a 3 4 0.643961 random 4 1 0.866521 string 5 2 0.120737 !
기본적으로 sum()을 적용합니다. "C" 열에 연결하면 다음과 같이 출력됩니다.
A 1 Thisstring 2 is! 3 a 4 random dtype: object
각 그룹에 대해 문자열이 연결된 원하는 출력을 얻으려면 여러 가지 접근 방식이 있습니다.
적용 사용 () 함수:
한 가지 방법은 groupby 개체에 사용자 정의 함수를 적용하는 것입니다. 이 함수는 각 그룹 내의 문자열을 연결할 수 있습니다.
<code class="python">def f(x): return Series(dict(A = x['A'].sum(), B = x['B'].sum(), C = "{%s}" % ', '.join(x['C']))) df.groupby('A').apply(f)</code>
또는:
apply() 및 람다 함수를 명시적으로 사용하여 동일한 결과를 얻을 수 있습니다.
<code class="python">df.groupby('A')['C'].apply(lambda x: "{%s}" % ', '.join(x))</code>
사용자 지정 논리 적용:
빈 문자열을 제거하거나 특정 구분 기호를 적용하는 등 사용자 지정이 필요한 경우 람다 함수 내에서 고유한 논리를 구현할 수 있습니다.
예를 들어, 빈 문자열을 제거하려면:
<code class="python">df.groupby('A')['C'].apply(lambda x: "{%s}" % ', '.join([c for c in x if c]))</code>
성능 고려 사항:
사용자 정의 기능을 적용하는 것이 sum() 함수가 내장되어 있습니다. 따라서 특정 요구 사항에 따라 성능 영향을 고려하는 것이 좋습니다.
위 내용은 `groupby`를 사용하여 Pandas DataFrame의 그룹 내에서 문자열을 연결하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

PythonArraysSupportVariousOperations : 1) SlicingExtractsSubsets, 2) 추가/확장 어드먼트, 3) 삽입 값 삽입 ATSpecificPositions, 4) retingdeletesElements, 5) 분류/ReversingChangesOrder 및 6) ListsompectionScreateNewListSbasedOnsistin

NumpyArraysareSentialplosplicationSefficationSefficientNumericalcomputationsanddatamanipulation. Theyarcrucialindatascience, MachineLearning, Physics, Engineering 및 Financeduetotheiribility에 대한 handlarge-scaledataefficivally. forexample, Infinancialanyaly

UseanArray.ArrayOveralistInpyThonWhendealingwithhomogeneousData, Performance-CriticalCode, OrinterFacingwithCcode.1) HomogeneousData : ArraysSaveMemorywithtypepletement.2) Performance-CriticalCode : arraysofferbetterporcomanceFornumericalOperations.3) Interf

아니요, NOTALLLISTOPERATIONARESUPPORTEDBYARRARES, andVICEVERSA.1) ArraySDONOTSUPPORTDYNAMICOPERATIONSLIKEPENDORINSERTWITHUTRESIGING, WHITHIMPACTSPERFORMANCE.2) ListSDONOTEECONSTANTTIMECOMPLEXITEFORDITITICCESSLIKEARRAYSDO.

ToaccesselementsInapyThonlist, 사용 인덱싱, 부정적인 인덱싱, 슬라이스, 오리 화.

Arraysinpython, 특히 비밀 복구를위한 ArecrucialInscientificcomputing.1) theaRearedFornumericalOperations, DataAnalysis 및 MachinELearning.2) Numpy'SimplementationIncensuressuressurations thanpythonlists.3) arraysenablequick

Pyenv, Venv 및 Anaconda를 사용하여 다양한 Python 버전을 관리 할 수 있습니다. 1) PYENV를 사용하여 여러 Python 버전을 관리합니다. Pyenv를 설치하고 글로벌 및 로컬 버전을 설정하십시오. 2) VENV를 사용하여 프로젝트 종속성을 분리하기 위해 가상 환경을 만듭니다. 3) Anaconda를 사용하여 데이터 과학 프로젝트에서 Python 버전을 관리하십시오. 4) 시스템 수준의 작업을 위해 시스템 파이썬을 유지하십시오. 이러한 도구와 전략을 통해 다양한 버전의 Python을 효과적으로 관리하여 프로젝트의 원활한 실행을 보장 할 수 있습니다.

Numpyarrayshaveseveraladvantagesstandardpythonarrays : 1) thearemuchfasterduetoc 기반 간증, 2) thearemorememory-refficient, 특히 withlargedatasets 및 3) wepferoptizedformationsformationstaticaloperations, 만들기, 만들기


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

WebStorm Mac 버전
유용한 JavaScript 개발 도구

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.
